Deterministic (Variational)
Approximate Inference

Reference:
Bayesian Reasoning and Machine Learning Ch. 28 (David Barber)
Probabilistic Graphical Model Ch. 11 (Koller & Friedman)
Pattern Recognition & Machine Learning Ch. 10. (Bishop)



In terms of difficulty,
there are 3 types of inference problem.

Today’s focus

O
* Inference which is proved intractable f,I ,A
_J _/

& should be solved using some Approximate Method.

(e.g. Approximation with Optimization {>r Sampling technique.) o }j




Agenda

* Principle of Variational Approximation

* Global Approximation
(Mean Field Approximation)

* Message Approximation
(Expectation Propagation)



Intractable Inference

Example: A N*N Grid MRF What we can solve: |5(X): unnormalized distribution
(N=3)
1 ~ ~
P(A...1)==P(A...1), P(A..1)= []s(X, X))
A—I{D—I{G Z (X1, X3)

(tractable)

B E H What we cannot solve:

C——F)— Z= Y P(A..I)
(A (intractable, as N increases)



Intractable Inference

Example: What we can solve:

N layers Factorial HMM PW,Y,Z| X =x) = 1 PW,Y,Z, X =x)
] ] Z(X :X) 1 1 1 1

PW,Y,Z, X=x)=PW)*P(Y)*P(Z)*P(X =x|W,Y,2Z)

(easy)

What we cannot solve: 5(X): unnormalized distribution

P(X =x) = ZP(\N,Y,Z, X =X) (hard)

W)Y,z

P(Z,=z|X=x)= Y PW,Y,Z,..Z;,X =X)

W.Y.Z,..Z5)



Intractable Inference

Example: Some intractability comes not from “Structure”, but from
Latent Topic Model passing message between different type of distribution.

Let Mix=80=(4,,...,6,), K=number of topics

Document Dir(a)
P(fOpiCl =7, | Mix =0) = ‘92l MTOpiCl—)Mix (0) = Zezl P(Wl | Zl)

Pos. Z,=1
K
@ P(Topic, =Z, [Mix =6) = 922 MTopic2—>Mix(‘9) = Z:é)z2 P(w,|Z,)
Z,=1
Word No compact representation for message:

P(Mix = 6| w) = P(Mix = ) * M opig mix (0) * Mgpic, mix (6)
(Const [16¢ j[zg P(w, | Zl)J(ZQ P(w, | Z )j

Summation is intractable. (Exponential to #variables)

zzj‘ (Hgalﬂ[k Z,J+1[k= ZZ])P(W |Z )P(W |Z ) do

.|.I5(Mix|w)d6?—
9 const



Principle of Variational Approximation

Let X: observation, Z: hidden variables.

Finds an approximate distribution Q(Z) from a “Tractable Family” that most similar to the
target distribution P(Z]| X) measured by some distance like KL divergence.

Q*(Z)zar%(rzr;in KL( P(Z]X)[Q(2) )

Q'(Z)=argmin KL( Q(Z)[|P(Z|X) ) .
Q(2) Intractable Family

/ P(Z|X) q\b
Q(2)

How can we optimize Q(Z)
without computing P(Z|X) ?
Tractable Family



Agenda

* Global Approximation
(Mean Field Approximation)



Global Approximation

One of the most popular tractable family is Factorized Distribution, which assumes
the target (posterior) distribution P(Z]X) can be factorized into q(Z,)*q(Z,)...*a(Z,),
that is, variables are independent to each other.

Example:

A D G

b O @ SN

C F Factorized Distribution

Q(Z) = q(Zl)q(Zz)""q(ZN)
P(A,...,1) :%5(A,..., )

~q(A)q(B).....q(l)



How to Find Q*(Z) ?

Q(2)= agmin  KL(Q(2)|P(Z|X))

Q(Z)eTractableFamily

KL( Q@) PZ|X) )= EQ(Z)[Iogp(Z#lx)—log %}

= Eq)[109Q(2) —log P(Z | X)]
= Eq)[10gQ(Z) —log P(Z, X) +log P(X)]

= Eq)[l0g Q(2)]-Eqz,llog P(Z, X)]+log P(X)

( Tractable if Q(Z) is tractable) (intractable....
but Independent of Q(Z) )

The resulting problem is equivalent to:

P(Z,X)] Find Q(Z) that put “similar weight”

Q (Z)=  argmax EQ(Z) [log to P(Z,X) on which Z=z to happen.

Q(Z)eTractableFamily Q(Z)



How to Find Q*(Z) ?

P(Z,X)] Find Q(Z) that put “similar weight”

Q(Z)=  argmax Eqpllog to P(z,X) on which Z=z to happen.

Q(2)=0(21)4(Z,)--a(Zy) Q(Z)

We maximize w.r.t. one ((Z,), while fixing all the other.

max Eq,[logP(Z, X)]-Eq [109Q(2)]

aZ,)
= Eo| By aen [OP(Z, X)] | - E.p[log a(Z)] - > Eqe,ll0g aZ)]

Expectation over other variables Independent to q(Z,)
denote as log P(Z,, X) + const.

q(Z,)
-KL(q(Z,) | P(Z,, X))

~E,, ){ log P(Z,, X) } -+ const. q°(2,)=P(Z,,X) = logq(Z,)=logP(Z,, X)

$ logq"(Z,) = By, a2, [109 P(Z, X)]+const.
= > E[log f(Z,..Z, ) 1+const.

f e factors
relatedto Z;



How to Find Q*(Z) ?

Example: Given other q(B)...q(l) fixed, maximize w.r.t. q(A):
B E H
C F




How to Find Q*(Z) ?

Example: Given other q(B)...q(l) fixed, maximize w.r.t. q(A):
A D G log 5*(A) = Eq(B)...q(I)[Iog IS(A’---’ 1]
- Eq(B)[ Iog ¢(A’ B) ] + Eq(D)[ Iog ¢(A1 D)]
® &
C F

P(A,....1)= % P(A,...1)
~q(A)q(B).....q(l)

Iterate over all variables ..... until convergence !!

Guarantee convergence to stationary point of max E [log F)(Z’X)] (Why?)

Q) Q(2)

( Every update strictly increase objective function, since KL(q | | p)=0 only if q(z,)=p(z,)-
Since the maximum is bounded, we are guaranteed to convergence. )



Agenda

* Message Approximation
(Expectation Propagation)



Message Approximation

Example: A N*N Grid MRF Variable Elimination =» Clique Tree
(N=3) F,(A,B,C) F,(A,B,C,D,E,F) F,(D,E,F,G,H,l)
. > 2 A A—D Eliminate A,B,C D)—&
= . H e Me;5,(A,B,C) N Me;5¢3(D,E,F) s
M¢, r,(A,B,C) Me; ¢¢3(D,E,F)
. Eliminate G,H,I
C F - Eliminate D,E,F e minate e

The Elimination:

M. - (D,E,F)= > M. . (A B,C)F(AB,C,D,E,F)

A,B,C
is intractable. ( exponential in N )

However, can we approximate the message Mg, (...) to make

the elimination tractable ?
=» Assume it is factorized !!



Message Approximation

Example: A N*N Grid MRF Variable Elimination = Clique Tree
(N=3) F,(A,B,C,DEF)
A D G How to obtain the next
q(A) A,—D) q(D) “Factorized Message” ?
% H
B E H

q(B) (B)—LEJ q(E)

q(C) (C—F) q(F)

Approximate the message by a factorized distribution:
Me ¢, (AB,C)=q(A)a(B)q(C)

A, B, Cnot entangled !! q(A)q(B)q(C)F,(A B,C,D,E,F) forms a tree.

=» We can compute marginal by sum-product algorithm !!



How to obtain a Factorized Message ?

Fz(A' B,C,D,E,F) How to obtain the next
“Factorized Message” ?
q(A) LA/ 12/ a(D) min _ KL( g(D)J(E)G(F) | M, (D.EF)) ?
_ _> q(D)a(E)a(F) 273
qa(B) (B,—1E) q(E) =>» Need iteratively solve for q(D), q(E), q(F).
(Is there more efficient way ?)

WOLETRET 9B iy KUM.. (D.E P aD)aE)(F)) 2

q(D)a(E)q(F)

M (D, E, F)

KL(M(D,E,F)|q(D)a(E)q(F)) =Eypepn (I
(M( )lla(D)a(E)a(F)) o.en (109 q(DYa(E)q(F)

—M(D) ]+E
q(D)
=KL(M(D,E,F)[M(D)M(E)M(F))+ > KL(M(X)| (X))

Xe&{D,E,F}
const. Set g*(X) = M(X)

(set q(D), q(E), q(F) equal to the marginal. )

M (D, E,F)
M(D)M(E)M(F)

M(E
vollogME L e Tiog

I\/l(F)]
q(E)

q(F)

=Eyvpen (log )+ EM(D)[ log




2-Layers Sum-Product Algorithm
with Approximate Messages

F,(A,B,C) F,(A,B,C,D,E,F) F,(D,E,F,G,H,I)

A < <

A —S Eliminate A,B,C D S G

M(A)M(B)M(C) M(D)M(E)M(F)

B) m— (8 <) (e —H
M’ (A)M’(B)M(C) el M’ (D)M’ ()M (F) —
Eliminate D,E,F - Eliminate G,H,I -

C C — F F — |

Elimination is easy since factors in every Clique form a “Tree”.
Computing Marginal (ex. M(D), M(E), M(F)) can be done by inner Sum-Product Algorithm.



Approximate Message: Expectation Propagation

Previous example is a special case of “Expectation Propagation”. General Expectation
Propagation uses distribution come from Log-linear model (including Gaussian, Multinomial,
Poisson, Dirichlet Distribution):

) 0
QQ(X)=$exp{9Tf(X) ) :;exp{e f(X) | ~5100Z(8) = Eq, [ F(X)]

where f(X)" =[f,(X), f,(X),..., fo(X)]" are sufficient statistics( features) derived from X.

min KLCPEX) [[Qy (X)) = Eppq[l0g P(X)] = Ep g [10g Qy (X)]

const.

max Epp109Q, (X)] = Epgo 6" f (X)]-log Z(6)

0

a_%EP(X)[HTf(X)]—a—é;IogZ(Q):O B E.olf (X)]=Eq, [ f(X)]

Moment Matching!!
Match the Expectation of feature to the original message.



Approximate Message: Expectation Propagation

Previous example is a special case of “Expectation Propagation”. A more general
version uses distribution come from Log-linear model (including Gaussian, Multinomial,

Poisson, Dirichlet Distribution):

Moment Matching:  Ep [ T (X)]= EQQ(X)[f (X)]

Example:
Moment Matching:

1. Q(X)is Multi(®): f (X) =X =k] Set equal Marginal Probability
Eo,00lIX =K1]=Q,(X =k)  Q,(X =k)=6, =P(X =k)

As previous MRF example.

2. Q(X) is Gaussian(p,2): f(X)=X f,(X)=XXT Moment Matching:
Set equal Mean, Variance.
Eq, 00X ]= 1 p=Ep[X]
T\ __ T
Faoa DX |2+ 2= B [XX 1 s

zvarP(X)[x]



Example:
Use EP Handling Continuous / Discrete BN

When BN contains both Discrete / Continuous Variables, messages cannot have a
compact representation.......

Gaussian Mixture of Gaussian

Mixture of Mixture
of Gaussian

(Exponentially Explode...)

Z,=1if O,is from X,
=2 if O, is from Noise

Z, Z,

Sensor
Observation ° ......

N




Example:
Use EP Handling Continuous / Discrete BN

When BN contains both Discrete / Continuous Variables, messages cannot have a
compact distribution.......

To prevent message grows to exponentially many mixtures of Gaussian....

: . |\/|_>(X1) = Z P(Zl)P(Xl)P(Oll Z, Xl)
Approximate M (X;) with Z, X -
y Mz, 271

single Gaussian Q(X,) by “Expectation Matching”:
W EN( X 1y, Z0) + Wo*N( X Wy, 25)

Ho =By o[ Xl =Wy +W, 14,
Eo =Vary, x,[X] Approxima'm@\i\l\l(%,\zm)
= Epzyl Var[X,] | Z,]+Vary [ E[X,] |Z,]
Z,=1if O,is from X,
= Epol Ty, 12,1+ Var,, [ 1, 12.] GO | 5 ok from e
N\
= W2, + WX, \&1 Z, Z
+ W, (24— o) (1 = g / /

W, (1t~ ) (11, ) e G ()




Agenda

Principle of Variational Approximation

Global Approximation
(Mean Field Approximation)

Message Approximation
(Expectation Propagation)

Comparison



Mean Field Approximation
vs. Expectation Propagation

Both of them find a tractable distribution (ex. Factorized distribution) Q(2) to

approximate the real distribution.

Mean Field approximate joint posterior distribution P(Z|X), minimizing

KL(Q[IP). (Why not KL(P||Q) ?*)

Expectation Propagation approximate messages, minimizing KL(P||Q).

(Why not KL(Q||P) ? 2)

Expectation Propagation needs only one-pass Sum-Product, while Mean Field

Approximation needs iterative maximization.
min KL(Q||P) has more False Negative. (Why 3)

min KL(P||Q) has more False Positive. (Why 4)

oasl Green: Mean Field

Red: EP

0.3F
Blue: Truth
0.25F

\
L
10 20



0
@log Z(0) = Eq, [ f(X)]

5 0

—log ()_Z(e)a e xp{607F(X) }

Z(Q)ZeXD{QTf(X)}*f(X) ZQQ(X)]‘(X) Eq, ool FOX)]




