Introrudction to Probabilistic Graphical Model

Modeling, Inference, and Learning



Overview

What'’s Probabilistic Graphical Model for ?

Tasks in Graphical Model:
— Modeling
— Learning
— Inference

Examples

— Topic Model
— Hidden Markov Model
— Markov Random Field



Overview

 What's Probabilistic Graphical Model for ?



What’s PGM for ?

* Use “Probability” to “Model” dependencies among target of
interest as a “Graph”. A unified framework for :

— Prediction (Classification / Regression)
— Discovery (Clustering / Pattern Recognition / System Modeling)
— State Tracking (Localization/ Monitoring/ MotionTracking)

— Ranking ( Search Engine/ Recommendation for Text/ Image/ Item )



What’s PGM for ?

* Use “Probability” to “Model” dependencies among target of
interest as a “Graph”. A unified framework for :

— Prediction (Classification / Regression)



Prediction (Lectures Before ...)

Variables of interest ?

X xX|X 0
0
X X 0 0,4
X
X X 00

Perceptron SVM
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Linear + K - Nearest
=T 20 i0 60 80 Regression *% NEighbor




Prediction with PGM

One prediction are dependent on others.
( Collective Classification )

______________
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Prediction with PGM

Labels are missing for most of data.
( Semi-supervised Learning )

Data:

(X1,X5,-e.1,Xg, Y=0)
(X1,X5,eee0Xg, Y=1)
(X1,X5, 000Xy, Y=7)

(X1,X5,eees Xy, Y=7)



What’s PGM for ?

* Use “Probability” to “Model” dependencies among target of
interest as a “Graph” . A unified framework for :

— Discovery (Clustering / Pattern Recognition / System Modeling)



Discovery with PGM

We are interested about hidden variables.
( Unsupervised Learning )

Data:

(Xl,xz,....,xd, y:?)
(Xl,xz,....,xd, y:?)

2
(X XpsereeXgs Y=7) © )
— /T



Discovery with PGM

Pattern Mining / Pattern Recognition.

X OHOHOAAK A g gnshghshmngho O -y,
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Discovery with PGM

Learn a whole picture of the problem

domain.
\ U,

Some domain knowledge in hand
about the generating process.

Data:

(X1,X5,-ee01Xg) [\

maternal genes

&)

&

gap genes

/

pair-rule genes

U

|

(X1,X9)eerXg) I

segment polarity
genes

(X1,X5)eerXg)

|

&)

homeotic genes




What’s PGM for ?

* Use “Probability” to “Model” dependencies among target of
interest as a “Graph” . A unified framework for :

— State Tracking (Localization/ Mapping/ MotionTracking)



State Tracking with PGM

Given Observation from Sensors (ex. Camera, Laser, Sonar .......)
Localization : Locate sensor itself.

Mapping : Locate Feature Points of environment.

Tracking: Locate Moving Object in the environment.




What’s PGM for ?

* Use “Probability” to “Model” dependencies among target of
interest as a “Graph” . A unified framework for :

— Ranking ( Search Engine/ Recommendation for Text/ Image/ Item )



Ranking with PGM

Who needs the scores ?

Variables of interest ?

=» Search Engine / Recommendation.

| Search
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search home
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search bid yahoo
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Overview

* Tasks in Graphical Model:
— Modeling
— Learning
— Inference



A Simple Example

I O N e R B



A Simple Example
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A Simple Example

Training Data

¥ o offe e olle o|fe O oo}[aoo o[?}
O O O o O o o O o O
‘&ﬂ@.. o/ le o/le @ O el o/le @ @ @
X~ Mul(p,~pe)
Is this the best model ? Whynot| 1|1 |3|-1]3|.1]7? 0105|0150
L) P (e £ IR0 B2 L) P (e £ IR0 B2

Maximum Likelihood Estimation ( MLE ) Criteria:

Best Model = argmax Likelihood(Data) = P(Data| model) = P(X,) * P(X,) * ...... * P(X40)

model

= (p3)> * (ps)®  sub. to P+ P, +Ps+P,+Ps+pg=1

3> p,=5/(5+5), ps=5/(5+5)



A Simple Example

Training Data

G |
o olfo® o olle olf® ® ® o} [o o|(® ® [ }
® ) ® O @ O O @ O ) P,
‘&ﬂ@.. oo olle @ O elle olle @ @) @
X~ Mul(p,~pe)
Is the “MLE” model best ? 0|0|[5]0|.5]0
Compute “Likelihood” on Testing Data. LS LI K

Testing Data

% 2 ) % %

P( Data | Your Model ) = P(X,)* P(X,)* P(X;)* P(X,)* P(Xs)

“Likelihood” tends to overflow so practically using “Log Likelihood”:

In[ P( Data | Your Model ) ] = InP(X;)+ InP(X,) + InP(X;) + InP(X,) + InP(X)



Training Data

A Simple Example

|

5

0

G \
{ooo {o o[ooo O [o QMQQO ® [
® @ O O @ ® e @ ® @ P,
‘&‘9.0 o/le o/le @ O e/le o/le o O @ *
X~ Mul(p;,~pe)
Is the “MLE” model best ? o(o|.5]|]0].
Compute “Likelihood” on Testing Data. EJ U m m
Testing Data
{O o|(® 0 {o o [o ®
® @ @ ® O
e @ @ ol o|le @

P( Data | Your Model ) = .5* .5* 5* 5% 5=0.0312

In[ P( Data | Your Model )] = In(0.5) *5 = -3.46

(0 is best)

(1is best)




A Simple Example

Training Data

¥ {ooo {o o[ooo O [o QMQQO o [?}
O O O O O O O O O O
0| 0o oj/le o/l @ O o/l o/l @ O o =*
X~ Mul(p,~p,)
Is the “MLE” model best ? 0ojo|5|0|.5(0
Compute “Likelihood” on Testing Data. ERRRIRY HH
Testing Data Overfit Training Data!!
{o NIC {o NC
O O Q O O
o @ O e @ O

P( Data | Your Model ) = .5* 5* 5% 5* 0 = 0

In[ P( Data | Your Model ) ] = In(0.5) *4 + In(0)*1 = -°°




Bayesian Learning

Training Data

®
f‘gxn

Prior Knowledge ?

. ?

X~ Mul(p,~pe)

0 I

1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

KN P R A A K R

Prior = P(p,~pg) = const. * (py)** (p,)* * (p3)" * (pa) * (ps)* * (pg)*

Likelihood =P(Data|p,~ps) = (p3)® * (ps)°

P(p,~pg|Data) = const. * Piror * Likelihood
= const. * ()1 * (p,) 1 * (pID* (py) 1 * (psfS* (pg)?




Dirichlet Distribution K ][OOOJ

@ @
@
@ @

Prior = P(p,,p;,Ps) = const. * (pg) * (p3)! * (ps)?




Dirichlet Distribution K ][OOOJ

@ @
@
@ @

Prior = P(p,,p5,p:) = const. * (p)° * (ps)° * (ps)®




@ @
@
@ @

Dirichlet Distribution [ ’ ][OOOJ

Prior = P(p;,p3,ps) = const. * (p;)*% * (p;)*% * (p5)*®°




Dirichlet Distribution [ ’ ][OOOJ

@ @
@
@ @

Prior = P(p;,p;,ps) = const. * (p;)° * (ps)° * (ps)°

0 0.1 0.2 0.3 0.4 0.5 0.b a7 0.8 0.9 1




@ @
@
@ @

Dirichlet Distribution L° ][OOOJ

Likelihood = P(p;,p3,ps) = (p1)° * (p3)* * (ps)°

0 o1 02 03 04 05 06 07 08 089 1




@ @
@
@ @

Dirichlet Distribution [ ’ ][OOOJ

P(p,,Ps,Ps | Data) = C*Prior*Likelihood = const.* (p,)! * (p4)™*® * (ps) 1*5

Observation: 5 m 5

Prior Likelihood Posterior

1 1

038

09 09

0.8

0.8 08

07 07 07

0.6
405
0.4
03

02

06 0.6

305 o 05
0.4 0.4
03 0.3

02 02

0.1

0.1 0.1

0 0 0
D0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

pi pl pl



@ @
@
@ @

Dirichlet Distribution [ ’ ][OOOJ

P(p,,p3,Ps| Data) = C*Prior*Likelihood = const.™ (p,)! * (p3)1*3° *(p.) 1+3° ‘

Observation: 30 30

Prior Likelihood Posterior

1 1

0.9 09
0.8 08
0.7 07
06 06
N 05 05 \
0.4 0.4
0.3 03
0.2 02
0.1 0.1
DD 0.1 0.2 0.3 0.4 05 06 0.7 0.8 09 1l g o 2 L mA b b oz B e L DD 0.1 02 03 0.4 05 06 07 03 09 1

jal

p1 pi



Dirichlet Distribution [ ’ ][OOOJ

@ @
@
@ @

P(p,,Ps,Ps | Data) = C*Prior*Likelihood = const.* (p,)! * (p;)1*300 *(p,) 1+300 ‘

Prior

1

038
0.8
07
06

o 05
0.4
03
02

0.1

1]
0 0.1 02 03 04 05 06 07 08 08 1

pl

405

Observation: 300 300

Likelihood Posterior

1 1

0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
o205
0.4 0.4
0.3 0.3

0.2 0.2

0.1 0.1

0
0 0.1 nz 03 04 05 06 07 08 08 1

0
0 01 02 03 04 05 0B 07 08 09 1
pi n

1



Bayesian Learning

Training Data

&

F &

How to Predict with Posterior ?

. ?

)

X~ Mul(p,~pe)

0 I

P(p,~pe|Data) = const. * Piror * Likelihood
=const. * (py)* * (py) * * (p3)™*> * (pa) * * (ps) ¥*> * (pg)*

1

1. Maximum Posterior (MAP) :

08

07

| 79 = apEmax o2 Dat2) = g 3515 3520

0.4
03

02 Testing Data 6 6* 1 *6* 6
e o|[® ~2l(e P(Data|p, ~ pg)=—*—*—*—*— =0.0012
@ @O @ @ O
.} o H o H o

0.1

16 16 16 16 16

o
0 0.1 02 03 04 05 06 07 08 089 1
pl

InP(Data| p, ~ p;) = —6.7 (much better)



Bayesian Learning

Training Data

N\‘
(3 \

&‘Q o o\(°, |[°.0l.0 . |[° :':M:': 5 .'-[?J

® @ @
® olle @ @ J
How to Predict with Posterior ?

@ @ @ @
X~ Mul(p,~pe)

P(p,~pe|Data) = const. * Piror * Likelihood
=const. * (py)* * (py) * * (p3)™*> * (pa) * * (ps) ¥*> * (pg)*

2. Evaluate Uncertainty :

Valp, o ol Pir--Pe] = (:003,.003, .014, .003,.014,.003)

Stderry, - p.paty L Pi--Ps] =(0.05,0.05,0.1,0.05,0.1, 0.05)




Bayesian Learning on Regression

A

P(YIX, W) =N(Y; XW,0%) Y H C
0)
XTW ‘

X

O
L4

N
Likelihood (W) = P(Data |W) = [ [ P(Y, | X,,, W)
=1

P(W | Data) = const.*Prior (W) * Likelihood (W)



Bayesian Learning on Regression

P(W) P(Y|X, Data)
likelihood prior/posterior data space
| |
w1 Y
0 ]
-1 -1
P(Data|W) P(W|Data)

I
Y
0
=5

-1 0 uy“ | -1 0 T |




Bayesian Learning on Regression
P(Data|W) P(W|Data) P(Y|X, Data)

likelihood prior/posterior data space
|

un




Bayesian Inference on Regression

Predictive Distribution : P(Y|X, Data) = I P(Y|X, W) * P(W|Data) dW

Modeling Uncertainty :

of &e— RN

0 . 1 0

; .
—— % 0O
ot \@\ o 0t Dé\ 0o -
___'__,_,.o-'-""'_f‘- % ._(".




Overview

* Tasks in Graphical Model:
— Modeling (Simple Probability Model)
— Learning (MLE, MAP, Bayesian)
— Inference (?)

| have seen “Probabilistic Model”.

But where is the “Graph” ?



Overview

| have seen “Probabilistic Model”.

But where is the “Graph” ?
* Examples
— Topic Model



How to Model a Document of Text ?

Machine learning, a branch of artificial intelligence, is a
scientific discipline concerned with the design and
development of algorithms that allow computers to evolve
behaviors based on empirical data, such as from sensor
data or databases. A learner can take advantage of
examples (data) to capture charactenistics of interest of their
unknown underlying probability distribution. Data can be
seen as examples that illustrate relations between observed
variables. A major focus of machine learning research is to
automatically learn to recognize complex patterns and make
intelligent decisions based on data; the difficulty lies in the
fact that the set of all possible behaviors given all possible
Inputs is too large to be covered by the set of observed
examples (training data). Hence the learner must generalize
from the given examples, so as to be able to produce a
useful output in new cases.

What you wantto do ?

Build Search Engine ?
Natural Language Understanding ?

Machine Translation ?

Bag of Words Model:

Not consider words position,
just like a bag of words.



Model a Document of Text

B O 0 2 i A S A )
Document e
W) W)W () OOOOOW | W~ MUl ;™ Piyocabutary )
900000000
900000000
900000000
90000000606
90000000606
90000000060




Model a Document of Text
Docl Doc?2

learning,

intelligence,

algorithm,

MLE from data =» p,, = 1/6 for all w.
What'’s the problem ?

=» Likelihood = P(Data) = P(Doc1,Doc2) =(1/6)3 * (1/6)3 =2*10"

Each Doc. has its own distribution of words ?!



Each Doc. has its own distribution of words ??

Abstract

We describe latent Dirichiet allocation (LDA). a generative probabilistic model for collections of
discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model. in which each
item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic 1s. in
turm. modeled as an infinite mixture over an underlying set of topic probabilities. In the context of
text modeling. the topic probabilities provide an explicit representation of a document. We present
efficient approximate inference techniques based on variational methods and an EM algorithm for

S P TR [ P 1 5 S NI I IS,

empirical Bayes geee
and collaboratm
model.

ABSTRACT
One essential issue of document clustering 1s to estimate the
appropriate number of clusters for a document collection to which
documents should be partitioned. In this paper. we propose a
novel approach. namely DPMFS. to address this issue. The
proposed approach 1s designed 1) to group documents into a set of
clusters while the number of document clusters 1s determined by
the Dirichlet process mixture model automatically: 2) to identify
the discriminative words and separate them from irrelevant noise
words wvia stochastic search wvariable selection technique. We
explore the performance of our proposed approach on both a
synthetic dataset and several realistic document datasets. The
comparison between our proposed approach and stage-of-the-art
document clustering approaches indicates that our approach is
robust and effective for document clustering.

SR [ B

Documents on “the same Topic”

. text classification.
e probabilistic LSI

A bstract

has similar distribution of words.

is (DP) mixture models pro-
vide a flexible Bayesian framework for den-
sity estimation. Unfortunately, their flexibil-
ity comes at a cost: inference in DP mixture
models 1s computationally expensive, even
when conjugate distributions are used. In the
common case when one seeks only a maxi-
mum a posteriori assignment of data points
to clusters, we show that search algorithms
provide a practical alternative to expensive
MCMC and wvariational techniques. When a
true posterior sample is desired, the solution
found by search can serve as a good initializer
for MCMC. Experimental results show that
using these techniques is it possible to apply
DP mixture models to very large data sets.




A Topic Model ---"Word” depends on “Topic”

Template Representation

Document

T
\/ Pos.

Word 4

__@Topic

Ground Representation

Docl 1/2 |~11/2 Doc2
Topic[d] “1” “2"

dog puppy breed learning intelligence algorithm

Topic 1 p1 1 1 1 1 1
e 0 dog 0 puppy 6 breed 6 learning 6 intelligence 0 algorithm

1/3 1/3 1/3 0.0 0.0 0.0
Topic2 2 2 2
e 0 dog 0 puppy 0 breed 62Iearning 62intelligence ezalgorithm
For all Documents d 00 00 00 1/3 1/3 1/3
1. draw Topic[d] ~ Multi (u) Likelihood = P(Data) = P(Doc1)*P(Doc2)

For all Position w

2. draw W[d,w]~ Multi (@Tricld])

= { P(T)P(W,~"W;|T,) } * { P(T)P(W,~W;|T,) }

=(1/2) (1/3)3 (1/2) (1/3)3 =3*103




Learning with Hidden Variables

1. Given Topics, we can learn word’s distribution.
Document

M |
P(W| Topic1) P(WTopic2)

\, Pos.
/eTopic
Word 4
W >W
@ @ @ @ @ G
@ Docl Doc2 Doc3 Doc4d Doc5 Doc6
i A A E A A C
W A B C C B C
W B D F D C C
\A/ B A F C A F
W E B C F A F




Learning with Hidden Variables

Document

@ —H 2. Given words distribution P(W | Topic),
’/ we can infer Topics.

\, Pos.
o Q/eTopic
or
P(T|W,~W,)
= const. * P(T) * P(W1|T) P(W2|T) ...P(W5|T)

@ Docl Doc2 Doc3 Doc4d Doc5 Doc6
i A A E A A C
W A B C C B C
W B D F D C C
\A/ B A F C A F
W E B C F A F




Learning with Hidden Variables

Document
M
Both of them are unknown, how to Learn?
\, Pos. . .
gTopic =>» Using EM algorithm.
— o o o o o
Word 4] (here is simplified version.)
@ Docl Doc2 Doc3 Doc4d Doc5 Doc6
W A A E A A C
W A B C C B C
W B D F D C C
-~ B A F C A F
W E B C F A F




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/l"' how to learn word distribution ?

\, Pos.

Word 4

/eTopic

Random Initalize :

@ @ @ @ @ G

@ Docl Doc2 Doc3 Doc4d Doc5 Doc6
W A A E A A C
W A B C C B C
W B D F D C C
\A/ B A F C A F
W E B C F A F




Learning with Hidden Variables

Document

\, Pos.

Word

4

-

/eTopic

===

\A/

3

Topic is unknown (No one can tell us.),
how to learn word distribution ?

PWH| A B | C D] E | F_

M-Step:

1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15
1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15
Docl Doc2 Doc3 Doc4 Doc5 Docb

A A E A A C

A B C C B C

B D F D C C

B A F C A F

E B C F A F




Learning with Hidden Variables

Document

\, Pos.

-

Topic is unknown (No one can tell us.),
how to learn word distribution ?

PWH| A B | C D] E | F_

1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15
1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

\A/

=

Topic
Word 46
E-Step:
1
W
"W
W

P(T|W,~W,) = const.* P(W,~W,|T) * XT) 1/2, 1/2

Docl Doc2 Doc3 Doc4 Doc5 Docb

mo @ > >
™ >» 0w >
O T O m
m OO0 >
> >0 W >
m T O OO0




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/”‘ how to learn word distribution ?
o PmJPwm A | B | C D | E | F_
_gTopic 1/2 T1  6/15 3/15 3/15 1/15 1/15 2/15
4

e 1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

E-Step:

& @

Docl Doc2 Doc3 Doc4d Doc5 Doc6
W
"W
W
\A/
-

mow ™ > >
@ >» 0O w >
O T mm O m
m O OO >
> > 0O W >
i NeNeNe!




Learning with Hidden Variables

Document

-

Topic is unknown (No one can tell us.),
how to learn word distribution ?

PWH| A B | C D] E | F_

1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15

\A/

3

1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

\, Pos.
/eTopic
Word 4
E-Step:
W
"W
W

@ 332*2

Docl Doc2 Doc3 Doc4 Doc5 Docb

momm@ > >
™ >» 0w >
O T O m
m OO0 >
> >0 W >
m T O OO0




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/”‘ how to learn word distribution ?
o PmJPwm A | B | C D | E | F_
_gTopic 1/2 T1  6/15 3/15 3/15 1/15 1/15 2/15
4

e 1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

E-Step:

YO @

Docl Doc2 Doc3 Doc4d Doc5 Doc6
W
"W
W
\A/
-

mow ™ > >
@ >» 0O w >
O T mm O m
m O OO >
> > 0O W >
i NeNeNe!




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/”‘ how to learn word distribution ?
o PmJPwm A | B | C D | E | F_
_gTopic 1/2 T1  6/15 3/15 3/15 1/15 1/15 2/15
4

e 1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

E-Step:

YO 0 o

Docl Doc2 Doc3 Doc4d Doc5 Doc6
W
"W
W
\A/
-

mow ™ > >
@ >» 0O w >
O T mm O m
m O OO >
> > 0O W >
i NeNeNe!




Learning with Hidden Variables

Document

Word

\, Pos.

4

-

’//()Fopk

Topic is unknown (No one can tell us.),
how to learn word distribution ?

PWH| A B | C D] E | F_

1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15
1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

E-Step:

W
"W
W
\A/
-

B

L @ @ @ L,

Docl Doc2 Doc3 Doc4 Doc5 Docb

momm@ > >
™ >» 0w >
O T O m
m OO0 >
> >0 W >
m T O OO0




Learning with Hidden Variables

Document

Word

\, Pos.

4

-

’//()Fopk

Topic is unknown (No one can tell us.),
how to learn word distribution ?

PWH| A B | C D] E | F_

1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15
1/2 T2 2/15 2/15 5/15 1/15 1/15 4/15

E-Step:

W
"W
W
\A/
-

B

©» @ @ @ W5,

Docl Doc2 Doc3 Doc4 Doc5 Docb

momm@ > >
™ >» 0w >
O T O m
m OO0 >
> >0 W >
m T O OO0




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/l"' how to learn word distribution ?
o pmfewin] A | B [ c | D | E | F_

eTopic 1/2 T1 6/15 3/15 3/15 1/15 1/15 2/15
Word H41

D @ @ O o @
D 0 o o o o

Docl Doc2 Doc3 Doc4 Doc5 Docb

Not Converge:

===

\A/

m o m > >
@ >» 0O w >
O T mm O m
m O OO >
> > 0O W >
i NeNeNe!

=




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/ll how to learn word distribution ? M-Step:
I o (v |+ o o e

)l _@Topic /2 T1 (/15 €5/15) 1/15  1/15  1/15  0/15
Word 12 T2 115 o015 (77150 1715 1/15 (5/15)

@ © © @ © @

Docl Doc2 Doc3 Doc4 Doc5 Docb
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Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/ll how to learn word distribution ?
o A | B | c | D | E|F_
ool greie 12 M (/15 €5/15) 1/15  1/15  1/15  0/15
or 12 T2 1/15 0/15 @ 1/15  1/15 @

w0 W @ @ @ @

Docl Doc2 Doc3 Doc4 Doc5 Docb

mow ™ > >
@ >» 0O w >
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i NeNeNe!




Learning with Hidden Variables

Document Topic is unknown (No one can tell us.),

/l.l how to learn word distribution ?
o A | B | c|D | E|F_
1 (/15 €5/15) 1/15 1/15 1/15  0/15

Word &/eTopic 1/2 T
or

D 0 0 0 0 o
el 0 @ @& @ @ @

Docl Doc2 Doc3 Doc4 Doc5 Docb

===

\A/

mow ™ > >
@ >» 0O w >
O T mm O m
m O OO >
> > 0O W >
i NeNeNe!
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2 Tasks :

1. Infer Topic of documents.

2. Learn Topic’s “word distribution” ?

Learning with Hidden Variables

Docl Doc2 Doc3 Doc4d Doc5 Doc6
A A E A A C
B C C B C
B D F D C C
B A F C A F
E B C F A F

Learning & Inference Jointly.

pwin] A | 8] c D E|F

1/2 T1 7/15 5/15 1/15 1/15 1/15 0/15
1/2 T2 1/15 o0/15 7/15 1/15 1/15 5/15
M ) @ @ @ @ @ @
Docl Doc2 Doch Doc3 Doc4 Doc6b
A A A E A C
A B B C C C
B D C F D C
B A A F C F
E B A C F F




Topic Model

Problem Solved ?

If....... Topicz

-mmmmm

Docl

Topic2 ?  Doc2

Topic2 Doc3
29922323272 Doc4

o ~r O O

© B O O Bk
R O Rk O K
, O kr O K
©O Rk KRk Rk O
© Rk KRk KL O

222?222??? Docs



Topic Model
Problem Solved ?

|f....... Topicl Topic2 Topic3
J I

-mmmmm

Topiclor2? Docl

0
Topic3 Doc2 0 0 0 0 1 1
Topic2or3? Doc3 0 0 1 1 1 1
Topiclor3? 1 ™\
Topic2 Docs Obvious that
a doc. has mix of Topics
instead of only 1 Topic. )

How to model each doc. as a “Mix of Topics”?



How to Model Mix of Topics ?

Document

@1

Pos.
_ gTopic Document @

s

= W)W ()




How to Model Mix of Topics ?

Document Relax “one Topic per doc. a.ssumptlor.l.
Instead, every doc. has a “Mix” of topics.

M
/ Mix = (|.l1, K, Ks,-..) l‘lK) , 0<=|‘1k <=1’ Zk Mk=1

Pos.
_ @Topic Document @
yd
Word @@@@




How to Model Mix of Topics ?

Document Relax “one Topic per doc.” assumption.

— 97?7 Instead, every doc. has a “Mix” of topics.
@ / Mix = (“1) Ko H3)eeey HK) , 0<=p, <=1, Zk K1

Pos.
@ | gopic Document @
g
- B o
Topic 1 Topic 2
Topic 2
Topic 3

Topic 3 Topic 1




How to Model Mix of Topics ?

Document

Pos.

@ p= @ Topic

e Document

Relax “one Topic per doc.” assumption.

— 97?7 Instead, every doc. has a “Mix” of topics.
@ / Mix = (|.l1, Ko H3)eeey MK) , 0<=p, <=1, Zk K1

40% 33%

27%

Topicl Topic2 _ Topic3

Word

W

For all Documents d @\@ @

WWW

W W

W W

Ww

Ww

For all Positionpind
2. draw Topic[d,p]~ Multinomial( Mix[d] )
3. draw Word[d,p]~ Multinomial(@Tricld.p])




How to Model Mix of Topics ?

Relax “one Topic per doc.” assumption.
Document

—??? Instead, every doc. has a “Mix” of topics.
@/ Mix = (1y, Ky Kgpeees Ky) , 0<=p, <=1, Zk n =1

i Mix = (g, Ky, Hzyeees Hy) defines\
/ @Topic a Multi(Mix) Dist. On Topics.
Word
While we need a

“Distribution on Mix” ??

1. draw Mix[d] ~ ????? =» Use “Dirichlet distribution”.
For all Position pind \ /(
2. draw Topic[d,p]~ Multinomial( Mix[d] )
3. draw Word[d,p]~ Multinomial(@Tricld:p])




- Dlr(a) (

Dirichlet Distribution [ ’ ][OOOJ

@ @
@
@ @

Document

Pos.

_ @Topic

“Latent Dirichlet Allocation (LDA)".

Due to “Hidden Mix” of a doc.,
this model is well-known as

Documents = Mix of Topics




“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS

SHOW PROGRANM PEOPLE SCHOOLS

MUSIC BUDGET CHILD EDUCATION

MOVIE BILLION YEARS TEACHERS

PLAY FEDERAL FAMILIES HIGH

MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER

ACTOR NEW SAYS BENNETT

FIRST STATE FAMILY MANIGAT

YORK PLAN WELFARE NAMPHY From:

OPERA MONEY MEN STATE David M. Blei etal.,
THEATER PROGRAMS PERCENT PRESIDENT Latent Dirichlet Allocation, 2003
ACTRESS  GOVERNMENT CARE ELEMENTARY

LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give 51.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these crants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services.”” Hearst Foundation President Randolph A. Hearst said Monday 1in
announcing the grants. Lincoln Center’s share will be 5200.000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive 5400.000 each. The Juilliard School, where music and
the performing arts are taught, will get 5250.000. The Hearst Foundation. a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual S100.000
donation, too.




So, How to learn a LDA ?

Document

Pos.

o
Word

- D|r(a)
The “E-Step” & “M-Step” is Much more difficult.
It’s out of scope. Please see:
je @Topic David M. Blei etal., Latent Dirichlet Allocation, 2003

Luckily, You don’t need to know exactly how to Learn & Infer.
There are tools online for Learning & Inference.

What important if knowing how to “design a model”.




Application for LDA : Search Engine

Retrieve in
instead of “Word Level”.

Given words in a document, Given words in a query, we can infer
we can infer its “topics”. the “topics” user want.

X X X X

jdocl 7_doc2 jdoc3 query

Score = j P(Mix | Document)* P(Query | Mix) dMix



Application for LDA : Social Network




Application for LDA : Social Network
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Application for LDA : Recommendation

You (T

Movie




Application for LDA : Image Categorize/Retrieval

“beach”

La&tent Dirichyet Allocation (LDA)

-

D

Fei-Fei et al. ICCV 2005



Overview

Where is the Graph ?

Is that important ?

* Examples
— Topic Model (EM algorithm)



Overview

i ?
— Inference (Bayes Rule ??) Where is the Graph :

Is that important ?

 Examples

— Hidden Markov Model



Given a Problem: Binary Coding/Decoding

L

0]

\"

e

Y

001

00

0100

0100

0110

011

00

0111

0100

101

( Coding with different length, ex. Huffman Coding. )

Application Example :
1. Decode words from codes. (given coding pattern)
2. Learn Coding pattern from data.

3. Decide which coding method a data sequence uses.



A Naive Model ---1°7¢" Markov Chain

2TBN
Template  PCtl Design a model explaining this data:
\/ 010 1011 010 1001 010 1001 010 1011
Cia C

t-1 t
A 2TBN template specify
how “before” affect “after”.




A Naive Model ---1°7¢" Markov Chain

2TBN

Template  PCtl Design a model explaining this data:
\ 010 1011 010 1001 010 1001 010 1011
Cia C
Sample Generating Procedure:
t-1 t 1. Draw C[t=1] ~ Bernoulli( p, )

Fort=2~T
2. Draw C[t] ~ Bernoulli( pclt-11)

Ground Representation

C=0 C=1
1 - 0 - 1 — 0 — 1 —
0.2 080 N/ N/ N N N

pct-1l | =0 | C=1
C,,=0 | 0.01 | 0.99
C.,=1| 099 | 0.01




A Naive Model ---1°7¢" Markov Chain

2TBN
Template  PCtl Design a model explaining this data:
\ 010 1011 010 1001 010 1001 010 1011
ct-1 ct
How to explain data with high likelihood ?
MLE estimate:
t-1 t
Po C=0 C=1 pC[t-l] Ct=0 ct=1
1 0
C.,=0 #00 g0
¢ #0? #0?
c,=1 | #0 | #1
t #17 #17




A Naive Model ---1°7¢" Markov Chain

2TBN

Template  PCtl Design a model explaining this data:
\ 010 1011 010 1001 010 1001 010 1011
Cia C
How to explain data with high likelihood ?
MLE estimate:
t-1 t
Po C=0 C=1 pC[t-l] Ct=o ct=1
1 0
C..=0 2/14 12/14
C..=1 11/13 2/13
Likelihood = P( Data ) Can we do better ?

= P(0) P(0]0)* P(1]0)** P(O]1)"*P(1]1)>  pattern “010” “1011” ...
= 1*(2/14)? (12/14)'%(11/13)*(2/13)* ot explicitly handled.



How to Model a Pattern ?

Assume in data, “101110” is a frequent pattern.
( or we have known it is a coding for some word. )

A Naive Approach : 5°7¢r Markov Chian

1 0 1 1 1 — 0
— Table Size = #of params = 2°
00000 ? ? P
00001 ? ?

=> Intractability & Overfitting

10111 High  Low When handling a coding with
______ 10 values = {1,2....,10} =» Size=10° !!!
11111 ? ?




How to Model a Pattern ?

Assume in data, “101110” is more frequent than usual.
( or we have known it is a coding for some word. )

Observation : a pattern can be produced with a State Machine

A State Machine is a special case of 1°79¢" Markov Chain:

CPD of
a 9 e 9 e a CPD of Red variable : Green variable :
1 0 1 1 1 0 1 s, 0 1
1
S 1 O
1 2
. . 55 0 1
jorder “Hidden” Markov Chain 1
. s, 0 1
Suffice to produce the pattern ! E 1
S 0 1
If there are K patterns, we can have K State Machines for them . S¢e 1 O



How to Model Multiple Patterns?

Design 3 state machines (A,B,and C) for the 3 patterns:
A C A B A B A C

0101011 p10[1001 0101001 010[1011

k 0.5
l 0 1 0 0 1 1 0 1 1

0 1

rury (R o [ ey [ ..

1

Consider “Transition Probability” among patterns.



How to Model Multiple Patterns?

Transition Table of the “Hidden Markov Chain”

(A A A8 (8,88 GG GG

1
1

Transition Diagram of
1 “Hidden Markov Chain”

B w N = e
[N




How to decoding (Inference) ?

Transition Diagram of
“Hidden Markov Chain”




In terms of difficulty,
there are 3 types of inference problem.

Y
A

* Inference which is easily solved with Bayes rule. S

I

]

L

* Inference which is tractable using some dynamic

o o%.,

programming technique. I I

(e.g. Variable Elimination or J-tree algorithm )

* Inference which is proved intractable f,I

(e.g. Approximation with Optimization or Sampling technique.)

@)

. . ® L

& should be solved using some Approximate Method. /V/ /L/J
i



Most Probable Assighment

* Given Data = {X,;=x,,..., X;=Xy} and some other variables
/={Z,, ..., Z,} unspecified , Most Probable Assignment of Z is
given by:

MPA(Z | X)=argmax P(Z| X)
Z

_ P(X[Z)P(Z) _
—arggnax PO _arggnax P(X|2)P(2)

= argmax P(1|Z,)*P(0|Z,)P(Z,|Z).....*P(0]| Z;)P(Z; | Z,)

e

X 1 0 0 1 0



M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

F(A,B)| al a2 a3
bl 1 2 4
b2 3 5
b3 9 8 6




M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B | A(B) |M(B) F(AB)| a1 a2 a3
bl | a3 | 4 bl 1 2 4
b2 b2 3 5 7
b3 b3 9 8 6




M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B | A(B) |M(B) F(A,B)| a1 a2 a3
bl | a3 | 4 bl 1 2 4
b2 | a3 | 7 b2 3 5

b3 b3 9 8 6




M(B) = max, F(A,B) : maxMarginal of B

M(B):mgx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B |A(B) |M(B) F(A,B)| a1l a2 a3
bl a3 4 bl 1 2 4
b2 a3 7 b2 3 5 7
b3 | al 9 b3 9 8 6




Most Probable Assignment

F(A,B)

EB A

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(A,B)

F(A,B)| al a2

a3

bl

b2

b3




Most Probable Assignment on a Chain

M(B)

e <o oCe e +~CaD

max P(E=e,D,C,B,A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(B) = max, F(A,B)

B [A*(B)|M(B)| | F(AB) | al | a2

a3

bli| al bl

b2 | a3 .. b2

b3 | a2 .. b3




Most Probable Assignment on a Chain

F(B,C)

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

P(C|B)| b1l b2 b3 B [A*(B)| M(B)
cl bl | al
c2 b2 | a3
c3 b3 | a2




Most Probable Assignment on a Chain

F(B,C)

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

F(B,C) | bl b2 b3
cl
c2
c3




Most Probable Assignment on a Chain

M(C)
—

e (D D

C

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(C) = max; F(B,C)

C [B*(C)|M(C)| |F(B,C)| bl | b2

cl b3 e cl

b3

c2 bl e c2

c3 b2 e c3




Most Probable Assignment on a Chain

F(C,D)

e fn e B o—CaD

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

P(D|C)| c1 c2 c3 C [B*(C) | M(C)
dl cl| b3
d2 c2 | bl
d3 c3 | b2




Most Probable Assignment on a Chain

F(C,D)
e 0 (e e (A

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

F(CLD)| «cl1 c2 c3
dl
d2
d3




Most Probable Assignment on a Chain

E

M(D)
pme——=

<—

D

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(D)=max. F(C,D)

c*(D)

M(D)

F(C,D)

cl

c2

c3

dl

cl

dl

d2

c2

d2

d3

c3

d3




Most Probable Assignment on a Chain
F(D,E=e)

E D[ C B A

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(D)=P(E=e|D)M(D)

P(E=e|D dl d2 d3 D |C*(D)| M(D)
e di| cl
d2 | c2
d3 | c3




Most Probable Assignment on a Chain
M

E o e =8 CAD

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M= max, F(D)
D* | M F(D,E=e) | d1 d2 d3
d2 | .. e

What weget? =» M =max,z, P(A,B,C,D,E=¢e)
What we want ? =» (A*,B*,C*,D*) = argmax,z, P(A,B,C,D,E=€)



Most Probable Assignment on a Chain

M
E

max P(E =e,D,C,B, A)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|AP(A)

o e 8 A

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)
What we want ? =» (A*,B*,C*,D*) = argmax,,, P(A,B,C,D,E=¢e)
(a1, b1, c2, d2)

C*(D)

M(D)

cl

c2

D* | M D
d2_| .. di
\dz

d3

c3

C [B*(C) | M(C) B |A*(B)| M(B)
cl| b3 /bl al
c2 | bl-T .. b2 | a3
c3 | b2 b3 | a2




How to decode (Inference) ?




e N N =

C,>A,
C, 2 G,
B, > A,
B, 2> B,

A, 2> A,

How to decode (Inference) ?




How to decode (Inference) ?




How to decode (Inference) ?

A2 A,
C,2 G




How to decode (Inference) ?




How to decode (Inference) ?

A, DA
C3

C, 2 G




How to decode (Inference) ?




How to decode (Inference) ?

1

B
Cy




How to decode (Inference) ?




How to decode (Inference) ?

B,~> B,

C,2 C,




How to decode (Inference) ?




How to decode (Inference) ?

© (")

MPA Likelihood = Mzax P(X]|2) C,




How to decode (Inference) ?

@ G2 A A DA DB Bze@

C,2 G2 G \C19 C,
B, A,

h
B,2> B, C, 2 (=2 G

A> AD B, > B,

orme) (€0 A (s (8 A A8

1 0 1 0 10 0




How to Model Multiple Patterns?

Transition Table of the “Hidden Markov Chain”

--mm-EEEE Using single-layer HMM to implement,

Transition Table is O(Istatel'\Z)
{ with most of entries “zero”.

1

Transition Diagram of
1 “Hidden Markov Chain”

B w N = e
[N




How to Model Multiple Patterns?

Exploit the Hierarchical Structure,
we can have more compact represent Al B | c
and separate the 2 layers. A 5| 5

Mfﬁﬂ Nﬂ
=" o5

-mm -
— m m m
A2 1

C3 1

__[B1182[83 B4
Bl 1

B2 1
B3 1



How can we know
Here will be a “A”

~W to Model Multiple Patterns?

pattern before

\_

decoding data 2?2 )| Is this a Legal Graphical Model ?

=
FENY

010]

>G \Q A|B|C
ole‘e\o @?@ aE

1011010

| |a1jaz a3l [cijc2fcsica [l | A1[A2]A3]
A N\ Al 1
1 How can we know 1 A2 1

Here is no dependency 1

before decoding data ?

g J
No !
] Note Structure of a GM should
How to encode structural uncertainty be fixed in advance.

into some variables ?

Uncertainty can only involve the
value of variable.




Solution of Hierarchical HMM

(2001, K.P.Murphy)

1, if Ztlayerz = Exit State of Ztlayerl

Introducing “Control Variable” = F'(Z iayert, Z 'tayer2) = _
0, otherwise

Layer 1: 7% =7t
Layer 2 : Transit according to State Machine

Ft= 0 =» pattern not ending =

Layer 1 : Draw from P(Z%*|Z})
Layer 2 : Draw independently from previous.

(A=A —(a)—(8r—(8)
ReDeTMD

I:t(ztlayerll ZtIayerZ)

Ft=1 =» pattern ending =




Solution of Hierarchical HMM

(2001, K.P.Murphy)

1 if Ztlayer2 = Exit State of Ztlayerl

Introducing “Control Variable” = F'(Z iayer1, Z layer2) = _
0, otherwise

Layer 1: 7% =7t
Layer 2 : Transit according to State Machine

Ft=0 =>» pattern not ending =

Layer 1: Draw from P(Z%*1|ZY)
Layer 2 : Draw independently from previous.

et @ AD D — B — D — B —@
e S >{<§

Ft=1 =» pattern ending =



Solution of Hierarchical HMM

0
(2001, K.P.Murphy) l

Layer 1 (Ar—>(Ar—>(Ar—>(B)—>(B)r—(B)—>(B) /QD
9010 L] 0L 0 ] 0
Layer 2 | (12 —>3)=>(1—=>2—>3) >4
0 1

t _eY
(I —

Y
X

Z

-1 BN t
Explain Data: 0101011 010 1001 010 1001 010 1011

Template
A C A B A B A C
Likelihood = P(A)*P(C|A) ...... *P(C|A)
*P(transitiormin A|A)*P(transitiorin C|C) ...... *P(transitiorin C|C)
*PUOAAT) PEAAC2)RIOHAT3) * PEHCT) ROTCZ)PIHE ST PEAHCE)......
= P(A)*P(C|A) ... *p(C|A) - (0.5)% Deterministic Behavior

Much better than Naive Model



Comparison of Single & Multi-Layer HMM

Note: Both method can yield the same likelihood to explain data.

6,

Single-Layer HMM Multi-Layer HMM
xt et Ox
t-1 t Lo,
t-1 t

Assume there are K patterns, where each pattern’s state machine has D states.
Size of Transition Table:

8, O( (K*D)? ) 8,> O(K?)
8, O(D?)



Application in Speech Recognition
( Speech Signal Processing 2010 Fall , Z=¥{L1] )

Hierarchical HMM is the foundation of Speech Recognition.

2\
P
Layer 1 | enjoy attending classes Language | =
Models
Decode
using . . > Parameters
L 2 d 9 tendi klaes .
Trained ayer 2 [ai] [in"d3o] [ 0l [ ] = Trained
Model Separately
P
Observe Acoustic |__
Models

When decoding low layer, high layer’s model

is taken into consideration.

(ex. Some “incorrect” Pronunciation can be realized
with knowledge of high-layer Language Model. )




Comparison of Single & Multi-Layer HMM

Note: Both method can yield the same likelihood to explain data.

6,

Single-Layer HMM Multi-Layer HMM
xt et Ox
t-1 t Lo,

t-1 t
1. We may want training different layers separately.

( ex. high layer: Language model ; low layer : Lexical Model )

2. We may want introduce prior on only some layers. (see next)

See “2001, K.P.Murphy” for more advantages of this approach.




Application in Speech Recognition
( Speech Signal Processing 2010 Fall , Z=¥{L1] )

Hierarchical HMM is the foundation of Speech Recognition.

2\
P
Layer 1 | enjoy attending classes Language | =
Models
Decode
using . . > Parameters
L 2 d 9 tendi klaes .
Trained ayer 2 [ai] [in"d3o] [ 0l [ ] = Trained
Model Separately
Observe Acoustic |__
Models

When decoding low layer, high layer’s model
is taken into consideration. How to handle different persons’
(ex. Some “incorrect” Pronunciation can be realized pronunciation ??

with knowledge of high-layer Language Model. )




Application in Speech Recognition

. How to handle different persons’

Technique similar to LDA.
(Latent Pronunciation Model)

For every person,
Introduce a Pronunciation
Pattern Variable 0 ,, .

Layer 1

In the beginning, use
“prior of 8, ” to decode
speech of a person.

Layer 2

As # of samples from the
person grows, new 0,,
t-1 ) can be learned/inferred
to adapt to that person.

Observation




Application : Natural Language Understanding

Multi-Layer HMM
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Gene Decoding

Pattern Mining / Pattern Recognition.

X OHOHOAAK A g gnshghshmngho O -y,

Y




Overview

Is there any other Graph

— Inference (Bayes Rule ??) than “a Chain” ?

* Examples

— Hidden Markov Model (Variable Elimination)




Overview

Is there any other Graph

than “a Chain” ?

* Examples

— Markov Random Field

( All of previous models are
special cases of Bayesian Network. )




Given Domain Problem :

Distribution of Shape

Modeling Spatial Pattern

Distribution of Texture

In sequential data, we model “before as cause” and “after as effect ”.

1 >0>1>0>1 >

In spatial data, who is the “cause” ?

o —~o—r
R —RFk—O0
LI~ )}Ho

Document A

- Dir(a)

_ eTopic




Modeling with Markov Random Field

Global Structure:

Define types of Node (variable) :
X eVal(X)={01}

Without “cause & effect”, MRF defines
a “Neighborhood” a variable will interact with :

Along with Neighborhood, types of “Cliques” are
defined :




Modeling with Markov Random Field

Local Structure :

Define Potential function ¢ (variables in C) for all types of clique C
we care about. The Gibbs Distribution of the MRF is given by:

P(X):% [ [#(Xc), where Z=> P(X) is for normalize.

Ceclique XeVal(X)
X
XY | X
Y XY |
d,(XY) O 1 d,(XY) O 1
0 2 1 0 2 1

X
Xy |
Y
d)l(X,Y) 0 1 d)z(X,Y) 0 1
0 1 4 0 1 4




How MRF Generate Samples

How BN generate samples ? How MRF generate samples ?
| | w X
z Z .
P( X|Pa(X) ) is available given Pa(X). P(XIN(X) ) can be derived from
Bayes Rule.

=» Sampling follows Topological Order.
But how to find an order ?



How BN Generate Samples ?




How BN Generate Samples ?

Burglary

i.i.d Sample : (~b,e,a,j,~”m)




How MRF Generate Samples

How BN generate samples ? How MRF generate samples ?
| | w X
z Z .
P( X|Pa(X) ) is available given Pa(X). P(XIN(X) ) can be derived from
Bayes Rule.

=» Sampling follows Topological Order.
But how to find an order ?



Gibbs Sampling for MRF

B e

Gibbs Sampling : t=1

1. Initialize all variables randomly. 0 — o

for t=1~M | |

for every variable X 0 :

2. Draw X, from P( X | N(X), ). a
end | |
end 0 /0
| |2(X=1Y)
P(X =1|N(X))= e
[Is(X=1Y)+ J]4(X=0Y) d(XY) 0
YeN(X) YeN(X)

0 5

1 1




Gibbs Sampling for MRF

Gibbs Sampling : t=2

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end
[Ts(x =1Y)
P(X =1|N(X)) = UGS,
( NED) [[#(X=1Y)+ []4(X=0,Y) d(Xy) 0 1
YeN(X) YeN(X)
For the central node: 0 5 1
1*9*9*1]
POX=1INCO)) = fgwgetrgagrreg 070 1 1193




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end

M_¢(X =1Y)

P(X =1|N(X))= )

( NG [[s(X=1Y)+ J]e(X=0Y)
YeN(X) YeN(X)

For the central node:

9*9*9*9

P(X =1|N(X))= 0.99

9*Q*Q*Q+1*¥1*1*]

d(Xy) O 1
0 5 1
1 1 |9




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).
end
end

When M is large enough, XM follows stationary dist. :

70 (X) = P(X):ém(xc)

(Regularity: All entries in the Potential are positive.)

d(Xy) O 1
0 5 1
1 1 |9




Modeling with Markov Random Field

To model texture with multi-label, we have: (ex.)
X eVal(X) ={01,2}

For texture, we extend Neighborhood to be:

N
PN
With Neighborhood, Possible “Cliques” are defined :
X X X
X X )Y | AN /
Y Y Y
X —Y Z— X X X
NI e AN
VA Y Z—Y Y —Z




Modeling with Markov Random Field

N N[~N] = \Y

—l N~ — ~ <

o — N N~ <
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o (@)} — —
>

R
7// N
/ N

/ /,.//
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Infer The Lost Segment




Some Model are Intractable for Exact Inference

Example: A Grid MRF

J ./ ./ ./ \.
<\ () () () [ >
v ./ ./ ./ \S
C\ () () () [ f ED
v ./ ./ ./ \
Q () () (A

\_/ / \_/

argmax P(A,B)*P(B,C) = F(A,B)
C



Some Model are Intractable for Exact Inference

Example: A Grid MRF

J ./ ./ ./ \S
(\ () () () [ >
v ./ ./ ./ \S
(\ () () ()
/ o/ ./ o/
Q () () (A
_/ -/



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

OO0

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

\f\/\()()

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF
Ki E ¢
/ ./ ./ \.
<\ () () (.
/ ./ ./ \. i
Approximate Inference
C\ ) ) Ve needed.
J/ ./ ./ .
Q () () (.
\_/ \_/

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.



Gibbs Sampling for Inference

Gibbs Sampling : t=1

1. Initialize all variables randomly. 0 —
for t=1~M ‘

for every variable X

2. Draw X, from P(X | N(X),., ). T on

end

end 0 0
| |2(X=1Y)
P(X =1|N(X))= T
[[¢(X=1Y)+ []4(X=0)Y) d(XY)
YeN(X) YeN(X)

0

1




Gibbs Sampling for Inference

Gibbs Sampling : t=2

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end
[T¢(X =1Y)
P(X =1|N(X)) = UGS,
( NED) [[#(X=1Y)+ []4(X=0,Y) d(Xy) 0 1
YeN(X) YeN(X)
For the central node: 0 5 1
1*9*1*1
e L e 1 1193




Gibbs Sampling for Inference

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end

M_¢(X =1Y)

P(X =1|N(X))= )

( NG [[s(X=1Y)+ J]e(X=0Y)
YeN(X) YeN(X)

For the central node:

9*9*9*9

P(X =1|N(X))= 0.99

9*Q*Q*Q+1*¥1*1*]

O — 0 — 0
T T
O — 0 — 0
T T
I O=0)
d(X,Y) 0 1
0 5 1
1 1 9




Gibbs Sampling for Inference

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).
end
end

When M is large enough, XM follows stationary dist. :

70 (X) = P(X):ém(xc)

(Regularity: All entries in the Potential are positive.)

0 1
5 1
1 9




Application of MRF :
Joint Segmentation & Classification




Application of MRF :
Collective Classification

""""""""""

F: Faculty Member
S: Student

C: Course
webpage

Q Q e
<— hyperlink
N

o




Collaborative Classification on Network

Webpage

Text |

Webpage

; Text

from |

Link

/

to

F: Faculty Member

S: Student

C: Course
webpage
/
hyperlmk

e



Define Global Dependency

We can define a MRF on the Schema:

Webpage

Text
¢d(Text,Type) |

pe[W1],Type[

F: Faculty Member
S: Student

Webpage

Text

C: Course

Ipe) %‘

F S

from
|

Link

I’
for each W1, W2, s.t. Link(W1,W2), define ¢(Type[W1],Type[W2]) \@



Define Local Potential Function

F: Faculty Member

$(Type[w1], Type[w2]) S: Student
E S F often C: Course
linksto S,C
F| O] 3|51
S|2 |0 |1 Coften
links to F
C| 5|0 O_
P(X)—— [To0xc)

Cecligue

o



Exact Inference
on Graphical Model

Reference:

Probabilistic Graphical Model Ch.9, Ch. 10 (Koller & Friedman)
CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 8,9,10 (Eric Xing)



Probabilistic Inference

* A Graphical Model specifies a joint distribution P,(X) over a
collection of variables X.

 How can we answer queries/questions about P(X) ?
That is, how can we inference using P(X) ?

* Type of queries:

— 1. Likelihood of evidence/assignments on variables
— 2. Conditional Probability of some variables (given others).
— 3. Most Probable Assignment for some variables (given others ).



Query 1: Likelihood

* Given Evidence E = {X,;=x,..., X;=X,} specifying some variables’
value and let Z={Z,, ..., Z,} be variables unspecified , the likelihood
of a model M yielding this evidence can be computed by:

likelihood of E
=Py (X) =) . Py(Zy Zig, Xoes Xp)
Zl ZK

Naive algorithm yield O( |Z|¥) complexity...



Query 1: Likelihood

likelihood of E=) .> Py (Z;,.... Z¢, Xy Xp )
Zy

Zl
* This measure is often used as criteria for Model Selection.

Ex. In speech recognition,
/: words (unspecified) , X: wave sample (specified evidence E)

How likely a person M=(Language, Pronunciation)

produce this wave sample can be Computed by: A person’s “Language Model” P(Z,,,|Z,)
likelihood of M produceE @
=P, (X

)i ( ) A person’s v v v
— ZZZ PM (Z17 Zz’ Z3, X5 Xo s X3) “Pronunciation X,

Model”

Z, Z, Z
TERTERN P(X|Z)m

- Summation over all possible words Z producing X

o




Query 1: Likelihood
likeltihood of E
=P, (X) = Z ZP (24,0, s Xp)

Taking special case E = empty, it can also be used to compute
Normalizing Const. = Z in MRF as following :

(let P(Z,..Z)= [] #(C) beunnormalized dist. , P(zl...zK)zéﬁ(zl...zK))

cligueCinM



Query 2: Conditional (marginal) Probability

* Given Evidence E = {X,;=x,,..., X,=X,} and some other variables
/={Z,, ..., Z,} unspecified , Conditional Probability of Z is given
by:

P(Z, X)
P(X)

P(Z|X)= , where P(X) s given by Query 1l

 Sometimes we are interested in only some variables Y in Z,
where Z={Y ,W }, then conditional (marginal) prob. of Y is

PEY [ X)=) P(Z|X)=)..> P(Y,W.. W, |X)

Wy Wk

Naive summation over uninterested variables W
yield O( |W|*) complexity...



Query 2: Conditional (marginal) Probability

Ex. In speech recognition,
/: words (unspecified) , X: wave sample (specified evidence E)

_P(Z.X)

P(Z| X) , Where P(X)Is given by Query1l

A word sequence Z,...Z, ‘s prob. given the wave sample X,... X,

If we only care the 15t word, then: o ;
A person’s “Language Model” P(Z,,,|Z,)

P(Z, | X) = P(Z,,Z,,Z, | X
(Z,1X) ;;( | X) @

A person’s Y v v

“ H H
Pronunciation X, X, X3
[l o

The 15t word Z,’s marginal distribution
given the wave sample X,... X,
(naive method is intractable for large K)

Model”
P(xtlzt)ml- o)




Query 3: Most Probable Assighment

* Given Evidence E = {X,;=x,,..., X,=%,} and some other variables
/={Z,, ..., Z,} unspecified , Most Probable Assignment of Z is

given by:
MPA(Z | X)=argmax P(Z| X)
Z
_argmax PXI2P@)
z P(X)
* MPA s also called “maximum a posteriori configuration”
or “MAP inference”.

=argmax P(X |Z)P(Z)

Note: | 1. Even if we have computed Query 2 = P(Z|X), it’s intractable to
enumerate all possible Z to get argmax, P(Z| X).

rarg male P(Zl | X)
2. MPA cares “Joint Maximum”,
not “Marginal Maximum”.

argmax P(Z| X) = <......
’ largmax, P(Z | X)




Query 3: Most Probable Assighment

We often just want to “decode words ” from the wave sample,
That is, we care Z* = argmax, P(Z| X) but not P(Z| X) itself.

Marginal Maximum:

(arg rT]a‘XZl P(Zl | X)
sargmax,, P(Z,| X) => maygive Z, ='l', Z,="comes', Z,="front'
\argmax,, P(Z,| X) (inconsistent decoding)
Joint Maximum (MPA) : A person’s “Language Model” P(Z,,,|Z,)
argmax P(Z,,Z,,2,| X) @G
21.22:24 A person’s ‘l’ \1’ \L
==> may give 'lI' '‘come’ ' from' “Pronunciation X,
Model”

(consistent decoding) P(X,1Z,) I . I Mﬂ



In terms of difficulty,
there are 3 types of inference problem.

Y
A

* Inference which is easily solved with Bayes rule. S

I

]

Today’s focus

L

* Inference which is tractable using some dynamic

programming technique. I I

(e.g. Variable Elimination or J-tree algorithm )

o o%.,

* Inference which is proved intractable J,I

(e.g. Approximation with Optimization or Sampling technique.)

@)

. . ® L

& should be solved using some Approximate Method. /V/ /L/J
i



Agenda

Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

Extend the idea of “VE” to general Factor graph with concept of
“Clique Tree”.

See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.



Variable Elimination: Inference on a Chain

= O~ O—Ce o~

How to get P(E=e) ?
P(E=e)=> > > > P(AB,C,D,E=¢)
A B C D

By structure of the BN:
P(AB,C,D,E)=P(E|D)P(D|C)P(C|B)P(B| A)P(A)

P(E)=2.>.2 .2 P(EID)P(D|C)P(C|B)P(B| A)P(A)

We can put summation as right as possible...



Variable Elimination: Inference on a Chain

= O~ O—Ce o~

How to get P(E=e) ?
P(E=e)=> > > > P(AB,C,D,E=¢)
A B C D

By structure of the BN:
P(AB,C,D,E)=P(E|D)P(D|C)P(C|B)P(B| A)P(A)

P(E)=2.>.2 .2 P(EID)P(D|C)P(C|B)P(B| A)P(A)

=>'P(E|D)> P(D|C)> P(C|B)> P(B|AP(A)



Variable Elimination: Inference on a Chain
F(A,B)

CaO—C e 3~~~

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

F(A,B)

A Table size=|A| |B|



Variable Elimination: Inference on a Chain
M(B)
AT~
P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B|A)P(A)

ZAF(AIB)=M( B )

Eliminate “A”. A Table size=|B|.



Variable Elimination: Inference on a Chain

F(B,C)
AT~

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(C[B)*M(B ) =F(B,C)

{ A Table size=|B| | C].




Variable Elimination: Inference on a Chain

x5 o o

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

25 F(B,C)=M(C)
{ Eliminate “B”. A Tak%




Variable Elimination: Inference on a Chain

F(C,D)
S-S
P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(D|C)M(C) = F(C,D)

{ATabIe size=|C||D].




Variable Elimination: Inference on a Chain
M(D)

3-8 -
P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

ZC F(CID)= M(D)

{ Eliminate “C”. A Table size=|D].




Variable Elimination: Inference on a Chain
F(D,E)

-6 XD

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(E|D)M(D)=F(D,E)

{ A Table size=|D| | E|.




Variable Elimination: Inference on a Chain
M(E)

e

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

2o F(D,E)=M(E)=P(E)

[ Eliminate D. Get the answer.

Both Time & Space Complexity are O( |A||B|+|B]||C|+|C||D|+|D]||E|) = O( |Range|?)

Naive method complexity = O(|A||B||C||D||E|) = O( |Range|N)



Variable Elimination: Inference on a Chain

How about inference on Undirected Model (MRF) ?

P(AB,C,D,E) = %¢(E, D)¢(D,C)a(C, B)g(B, A)

P(E)%%%%;ma D)#(D,C)4(C, B)¢(B, A

-~ S HE D)L 4D,0) Y HC. B 4B, A

The same idea applies !!



Variable Elimination: Inference on a Chain

f(A B) f(B Q) f(C, D) f(D E)

From now on, we won’t distinguish between BN & MRF.
The same algorithm applies to them in a “Factor View”.

P(AB,C,D,E) = %¢(E, D)¢(D,C)o(C,B)a(B, A)

P(AB,C,D,E)=1*P(E|D)P(D|C)P(C|B)P(B| A)P(A)

Al viewed as: % f(E,D)f(D,C)(C.B)f (B, A)



Variable Elimination: Inference on a Chain

F(A,B)
Qoo o o e
f(A,B) f(B,C) f(C,D) f(D,E)

f(A,B)=F(A,B)

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

f(A,B) f(B,C) f(C,D) f(D,E)

MB)

ZAF(AIB)=M( B )

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

F(B,C)
2o OO OO
f(A,B) f(B,C) f(C, f(D,E)

M( B )*f(B,C)= F(B,C)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

f(A,B) f(B,C) f(C,D) f(D,E)

ZBF(BIC)=M(C)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

M( C )*f(C,D) = F(C,D)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

M(D)
D
f(A,B) f(B,C) f(C,D) f(D,E)

ZCF(CID)=M(D)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

F(D,E)

f(A,B) f(8,C) f(C,D)l f(D,E)

M( D )*f(D,E) = F(D,E)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Chain

M(E

f(A,B) f(B,C) f(C,D) f(D,E

2oF(D,E)=M(E)=P(E)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.



Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(F,G,H)=f(F,G,H)

G H Elimination Order:
Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F> M(F) = 5, 4 f(F,G,H) Sum !

@d@ Elimination Order:

Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

S
(DolTHore(

& D

F(B,F)=f(B,F)M(F)
Product !

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree

without cycle,

then VE can be applied in a similar way.

oo

OO0

M(B)=2. F(B,F)
Sum !

M Elimination Order:
Let E be the root ;
Eliminate from leaves to root.



Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.
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Elimination Order:
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Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

Sum !
M’(B)=3,F(A,B)
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Elimination Order:
Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

¥
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F(B,C)=M(B)M’(B)f(B,C)
Product !

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.
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G ° Elimination Order:
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Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

; F(C,D)=f(C,D)

M(C)

° Elimination Order:

Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

@ Sum !
M’(C)=3,F(C,D)

CO-o-GO-a G

] M(C)

° ° Elimination Order:

Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

Product !
F(C,E)=f(C,E)M(C)M’(C)

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.




Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,

then VE can be applied in a similar way.
Sum !

M(E)=2F(C,E)=P(E)

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.



Variable Elimination: Inference on a Tree

Follow the Elimination Process, we can build a “Clique Tree”. In which:

1. Everynodeis a F(.) before elimination.
2. Everyedgeis a “message” M(.) passed from F(.) to F(.).

2cF(C,E)=P(E)

F(C,E)




Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

Only this part different !!

If we want to know P(D):




Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

If we want to know P(B):

F(B,F)

| M(F)

2F(B,F)=P(B)

. /

S
M(.)

The queried node should get
messages from all nodes on
the tree to get the marginal
distribution.



Variable Elimination: Inference on a Tree

Why is Cligue Tree useful ?

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

F(A,B) ) g F(B,C)

<o
F(B,f)
e I

F(F,G,H)

P(B,F)=M(B)f(B,F)M(F)

15t pass:
Take a node as root.
Run Sum-Product from leaves to root.

2"d pass:
Run Sum-Product from root to leaves.

All marginal dist. can be derived from

1. Multiply all M(.) from neighbors
by f(.) on this node.
2. Eliminate unwanted variables.




Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

bottleneck:
O([FlIGI[H])
time & space.

Complexity :

Elimination on a node F(A,B,C)
takes O(|A| |B||C|) space & time.

So the algorithm’s bottleneck is on
elimination for the “Largest Node”
on clique tree.




Agenda

Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

Extend the idea of “VE” to General Factor Graph with concept of
“Clique Tree”.

See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.



Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 1;: BCDEA

P(F)

= %ZA:;ZD:;; F(AF)T(AE)T(AD)T(AC)T(AB) Maximum Node Size=2

_ %Z f(AF)Y f(AE)Y f(AD)Y f(AC)Y f(AB)



Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(B,C,D,E,F)
ABCDEF

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(B,C,D,E,F)




Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order2: ABCDE

M(CI DI E)F)
BCDEF

M(B,C,D,E,F)

ABCDEF

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(CI DI EIF)




Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CIDIE)F)
BCDEF
M(B,C,D,E,F) CDEF

ABCDEF

M(D,E,F)

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(D,E,F)




Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CIDIEIF)
BCDEF
M(B,C,D,E,F) CDEF
ABCDEF
M(D,E,F)
MI(E, F)
///];EF

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(E,F)




Variable Elimination: Inference on General Graph

Some problem ignored earlier:

Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(B,C,D,E,F)

M(F)

BCDEF

ABCDEF

M(E,F)

M(CI DI EIF)

CDEF

M(D,E,F)

///BEF

P(F) <::EE::>

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(F)



Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CID’E’F)
BCDEF
©  Gowesl e
ABCDEF
M(F) M(D,E,F)

N M(E,F)
P(F) @E/ 0w

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

Maximum Node Size=6



Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 1: BCDEA

&
YD (O

A

In “Tree” structure factor graph, the optimal “Elimination Order”
is just “Elimination from leaves”.

If factor graph is not Tree, what’s the best elimination order ???




Variable Elimination: Inference on General Graph

When factor graph is not Tree, we want a Elimination Order “introducing
as fewer edges as possible” (then we will have factor size smaller).

Eliminate “C” =» fill 1 edge Eliminate “A” = fill 2 edges
Qsis better !!}

f(C,D)
M(A,D,E)

(B g5
f(C,E)

M(AD,E)=> f(AC)f(C,D)f(C,E) M(B,C,D,E)
C

Produce a factor of size 3 - ZA: f(AB)f(AC)T(AD)f(AE)

Produce a factor of size 4



Variable Elimination: Inference on General Graph

Unfortunately, Finding Elimination order with
“smallest maximum factor” is NP-hard.

It’s fortunate that greedy algorithm works quite well in practical,
in which, we just search for the “least-cost” variable to eliminate:

1. If variables have same cardinality
=>» cost = (# of edges introduced by elimination).

2. |If variables have different cardinality
=» cost = (# of edges)*(weight by cardinality of node involved)




Example: Factorial HMM

Language Model of “words sequence”
Speech Recognition: a e e
Pronunciation

X1 X, X3
Decoding 2 person’s speech M‘"‘”m’“ﬂ M"“"‘":‘ﬂ I'I'“ |'||'|"| N m
from waves:

Language Model of 15t person

e Language Model of 2" person

X Superposition of “2 waves”

oo




Example: Factorial HMM

Because a factor is a “clique” in undirected representation,
we transform Factorial HMM into “undirected” before running VE.

Moralize
—_—

Not a Tree.

Review:

factor graph e - e moralize .
-~ P(C|A,B)
© © ~




Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Z,,Y,, X,) = Z F(Y, Z) 1YL Y,) T(Y, X))



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 2 edges !!

M(Z,,Y,, X,) = Z PO, Z) 1YL Y,) TOY, X))



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M (Y., Z,, X,) = Z F(Y,2)1(2,,2,)1(Z,, X))



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 2 edges !!

M (Y., Z,, X,) = Z F(Y,2)1(2,,2,)1(Z,, X))



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M (Y1’ Z1) — z f (Y1’ X1) f (Z1’ Xl)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. no edges !! = Let’s eliminate !!

M (Yl’ Z1) — Z f (Y1’ X1) f (Z1’ Xl)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(z1,22)
M(Z,,Y,,Z,) = 3 M(Y,.Z,) £(2,,2,)f(2,,2,)
Z,

f(z2,23)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 3 edges!!

M(Z,.Y,,Z5) = Y M(Y,,2,) £(2,,2,)F(Z,, Z,)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

(21,22)
M (Yl’ Zz) = Z M (Y1’ Zl) f (Zl’ Zz)
Zy

M(Y,,Z,) M(Y,,Z,) | M(Y,,Z,)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,22)
Intro. 1 edge!!

(the best)

MY, Z,) = ZM (Y1, Z,) 1(Z,,2,)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 0 edge !!

(the best)
o
M’(Y2,22) M(Y3,Z3)
(&—2)

M*(Y,,Z,) = ZM (Y1, Z,) T(Y,Y,)

M(Y,Z,) [ M(YyZ,) | M(Y;,Z5)



Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)




Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(Y2,Y3)

“
M(Y3,23)
M(Y2,Z3) e M(Y,,Z,)

M(Y,, Z;) :ZMI(Yzizz)M (Y,,Z,)1(Z,,Z5)




Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

15t pass:
Take a node as root.
Run Sum-Product from leaves to root.

2"d pass:
Run Sum-Product from root to leaves.

All marginal dist. can be derived
from

1. Multiply all M(.) from neighbors
by f(.) on this node.
2. Eliminate unwanted variable.




Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

Assume we want : P(Y,Y,)

P(Y.,Y,) = Zb(Ysz’Zz)

Y, Y, are

dependent. q‘\/

=>»There must be a node in
clique tree containing (Y,,Y,).




Example : General Factorial HMM

A clique size=5,
intractable most of times.
(No tractable elimination exist...)

- ol




Some Model are Intractable for Exact

Inference

Example: A Grid MRF

:
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Some Model are Intractable for Exact

Inference
Example: A Grid MRF

@
%

—O—0O-C0-0
OO

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

OO0

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

\f\/\()()

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF
i Ei ?
-~ g g S We will introduce
C\ N N - Apprgxirpate Inference
v ./ ./ . for this kind of problem
later.
C\ [ [ [
/ ./ ./ \.
O () () [
\_/ _/

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.



Variable Elimination: Dealing with
Evidence

What if some variables X={X,...X,} are given in Evidence :

Given Evidence { B=b }:

f(A,B=b) f(B=b,C) [



Variable Elimination: Dealing with
Evidence

What if some variables X={X,...X,} are given in Evidence :

Given Evidence { B=b }:

© - N

f(A) f0) G A model with evidence

@.D - G - » equivalent to another model

without evidence.

f(F) \ Y,

To infer P,,(Z| X), we transform
MV to another model M’
and infer P,.(Z).



Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 , , |

P(X , Z) — E f (Zl’ >\1) f (211 >\2) f (Zp X3)
f(Z %) T2 X) T2 %) ()
f(zs’ <1)f(Z3,X2)f(Z3,X3) »‘%;'«\‘
£(2,,2,)f(Z,,Z.) X, X, X,

/

But given X1~X3, we actually run inference on another model M".




Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

P(X =x2) =2 1,@) (@)1,

fx(zz)fxl(ZZ)fx”(ZZ) Qe@
f(Z) 1 (Z)1,"(Z,) | ==

f (Zl’ZZ) f (ZZ’Z?’)/7

But given X1~X3, we actually run inference on another model M".




Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

P(X =X,2) =2 1,2, Z) 1/ (22,2,

But given X1~X3, we actually run inference on another model M".




Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1~f Z0.Z) 1.2, 2,)

P(Z|X =X)= PF(>>((x: X’)s)
- *Zzzf (£,2,)1,'(Z,,Z;)
l | | Z1 722 Z3 e\g“«e
:ﬂ ' (Z21,2,)1,(Z2,,25) / e

X, X, X3

/

But given X1~X3, we actually run inference on another model M".




Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 1 1
P(X = X’Z) B TZ» fx (Zl’ZZ)fx (ZZ’ZB)

P(X = x) ;ZZZ f.'(2,,Z,)1,'(Z,,Z5)

Z1 72 Z3

P(Z|X =x)=

1 ., .
:Z'—(X) fx (Zl’ZZ)fx (Zz’zs) W

/

But given X1~X3, we actually run inference on another model M".

le.
X, X, X3




Variable Elimination: Dealing with
Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 1 1
p(x — X,Z) B z fx (erzz)fx (22123)

P(X = x) %;;; f,'(2,,2,)1,'(Z,,Z;) e e @
1

=700 f.'(2,2,)f.'(Z,,Z;)

/
New normalize const. can be computed Using VE. /

=
But given X1~X3, we actually run inference on another model M".

P(Z|X =x)=

M’ is much more tractable.




Variable Elimination: Dealing with
Evidence

Even if P(Z|X) can be inferred efficiently, “learning P(X,Z)” is intractable.
One solution is model P(Z|X) directly, yielding “CRF” model.

1
P(X,2)= £(2,X) T2 X,) (21X Q‘q‘/@
(2,0 X)) (20 X)) F (23 X) ==
F(Z X)) F(Z X,) F(Z4) X,) X, X, Xs

1(Z,,2,)1(Z,.Z,) Intractable VIRF model

1

P(Z | X) :m fx'(Zl,Zz) fxl(221z3)

Tractable CRF Model



Agenda

* Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

* See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.



Query 3: Most Probable Assighment

* Given Evidence E = {X,;=x,,..., X;=X,} and some other variables
/={Z,, ..., Z,} unspecified , Most Probable Assignment of Z is
given by:

MPA(Z | X)=argmax P(Z| X)
Z

_ P(X[Z)P(Z) _
—arggnax PO _arggnax P(X|2)P(2)

(arg male P(Zl | X)
argmax P(Z| X) # <......
’ largmax, P(Z, | X)




What's the different ?

MPA Goal:
max P(Z|X) = max... max P(Z,..Z, | X)

Likelihood Goal::
(Solved using VE) P(X) = ZZ P(Z,..2Z,,X)

Zy Zy

Exploring the similarity between “max” & “3” is the key
to solve MPA using VE.




What's the different ?

Review: (4>~ O>—CeOo—Coo—CED
P(E=e)=> > > Y P(E=¢|D)P(D|C)P(C|B)P(B|AP(A)

D C B A

=>"P(E|D)>_P(D|C)Y_P(C|B)> P(B| A)P(A)

M(B) : marginal of B

max P(AB,C,D,E=e)

AB,CD

= Max max max max P(E=¢e|D)P(D|C)P(C|B)P(B|A)P(A)
= max P(E=e|D) max P(D|C) max P(C|B) max P(B|A)P(A)

M’(B) : ???



M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).




M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B bl b2 b3
F(A,B bl b2 b3
(A.B) A*(B) a3
al 1 3 9
a2 2 > 8 B bl b2 b3
a3 4 7 6 M(B) 4




M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B bl b2 b3
F(A,B bl b2 b3
(A.8) A*(B) a3 a3
al 1 3 9
a2 2 > 8 B bl | b2 | b3
a3 4 7 6 M(B) 4 -




M(B) = max, F(A,B) : maxMarginal of B

M(B):mgx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F( A*(B), B ).

B bl b2 b3
F(A,B) | b1l b2 b3
A*(B) a3 a3 al
al 1 3 9
a2 2 > 8 B bl | b2 | b3
a3 4 7 6 M(B) A - 9




Most Probable Assighment on a Chain

F(A,B)

O~ o~ o—Ce>

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(A,B)

F(A,B)| al a2

a3

bl

b2

b3




Most Probable Assignment on a Chain

M(B)

O O~ o~

max P(AB,C,D,E=e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(B) = max, F(A,B)

B [A*(B)|M(B)| | F(AB) | al | a2

a3

bli| al bl

b2 | a3 .. b2

b3 | a2 .. b3




Most Probable Assignment on a Chain

F(B,C)
Che o@D oD

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

P(C|B)| b1l b2 b3 B [A*(B)| M(B)
cl bl | al
c2 b2 | a3
c3 b3 | a2




Most Probable Assignment on a Chain

F(B,C)
CA DO~ o~ O0—CED

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

F(B,C) | bl b2 b3
cl
c2
c3




Most Probable Assignment on a Chain

M(C)

Cha WGP @D P D

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(C) = max; F(B,C)

C [B*(C)|M(C)| |F(B,C)| bl | b2

cl b3 e cl

c2 bl e c2

c3 b2 e c3




Most Probable Assignment on a Chain

F(C,D)

Co—CD

max P(A,B,C,D,E=¢e)

AB,CD

n

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

P(D|C)

cl

c2

c3

C

B*(C)

M(C)

dl

cl

b3

d2

c2

bl

d3

c3

b2




Most Probable Assignment on a Chain

F(C,D)

CPa Uy Do O &>

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

F(CLD)| «cl1 c2 c3
dl
d2
d3




Most Probable Assignment on a Chain

max P(A,B,C,D,E=¢e)

AB,CD

C ¢ DH—

M(D)

Coo~CE5

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(D)=max. F(C,D)

c*(D)

M(D)

F(C,D)

cl

c2

c3

dl

cl

dl

d2

c2

d2

d3

c3

d3




Most Probable Assignment on a Chain

F(D,E=e)
Chodbodde o dD

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(D)=P(E=e|D)M(D)

P(E=e|D dl d2 d3 D |C*(D)| M(D)
e di| cl
d2 | c2
d3 | c3




Most Probable Assignment on a Chain
M

A~ e D>~ o= o—ED

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M= max, F(D)
D* | M F(D,E=e) | d1 d2 d3
d2 | .. e

What weget? =» M =max,z, P(A,B,C,D,E=¢e)
What we want ? =» (A*,B*,C*,D*) = argmax,z, P(A,B,C,D,E=€)



= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

Most Probable Assignment on a Chain

max P(A,B,C,D,E=¢e)

AB,CD

Ceo—C oo~

M

>

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)
What we want ? =» (A*,B*,C*,D*) = argmax,,, P(A,B,C,D,E=¢e)
(a1, b1, c2, d2)

C*(D)

M(D)

cl

c2

D* | M D
d2_| .. di
\dz

d3

c3

C [B*(C) | M(C) B |A*(B)| M(B)
cl| b3 /bl al

P c2 | b1-T .. b2 | a3
c3 | b2 b3 | a2




Most Probable Assighment on general

It’s straight forward to ger%!a%g)elf;lgorithm above
to case of general graph with similarity of “>” and “max”.

(The difference is there must be a “traceback” procedure to find the
“argmax” after we get “max”.)




Summary

To solve inference problems like “likelihood of X”, “P(Z| X)”,
“Most Probable Assignment”, we can use Variable Elimination
(e.g. Sum-Product) algorithm

)

In case of tree-structured factor graph, we just run “2 passes’
of VE from leaves to a root & the reverse.

In case of general-structured graph, we must find a “good”
elimination order inducing smallest “maximum clique”, which
is often done with greedy method.

When we know which variables will be given in advance, we
can derive much easier model M’ from original M with
evidence, which is more tractable in Inference & Learning.



Deterministic (Variational)
Approximate Inference

Reference:
Bayesian Reasoning and Machine Learning Ch. 28 (David Barber)
Probabilistic Graphical Model Ch. 11 (Koller & Friedman)
Pattern Recognition & Machine Learning Ch. 10. (Bishop)



In terms of difficulty,
there are 3 types of inference problem.

Today’s focus

O
* Inference which is proved intractable f,I ,A
_J _/

& should be solved using some Approximate Method.

(e.g. Approximation with Optimization {>r Sampling technique.) o }j




Agenda

* Principle of Variational Approximation

* Global Approximation
(Mean Field Approximation)

* Message Approximation
(Expectation Propagation)



Intractable Inference

Example: A N*N Grid MRF What we can solve: |5(X): unnormalized distribution
(N=3)
1 ~ ~
P(A...1)==P(A...1), P(A..1)= []s(X, X))
A—I{D—I{G Z (X1, X3)

(tractable)

B E H What we cannot solve:

C——F)— Z= Y P(A..I)
(A (intractable, as N increases)



Intractable Inference

Example:
N layers Factorial HMM

What we can solve:
1
Z(X =X)

PW,Y,Z| X =Xx)= PW,Y,Z, X =X),

PW,Y,Z, X=x)=PW)*P(Y)*P(Z)*P(X =x|W,Y,2Z)

(easy)

What we cannot solve: 5(X): unnormalized distribution

P(X =x) = ZP(\N,Y,Z, X =X) (hard)

W)Y,z

P(Z,=z|X=x)= Y PW,Y,Z,..Z;,X =X)

W.Y.Z,..Z5)



Intractable Inference

Example: Some intractability comes not from “Structure”, but from
Latent Topic Model passing message between different type of distribution.

Let Mix=80=(4,,...,6,), K=number of topics

Document Dir(a)
P(fOpiCl =7, | Mix =0) = ‘92l MTOpiCl—)Mix (0) = Zezl P(Wl | Zl)

Pos. Z,=1
K
@ P(Topic, =Z, [Mix =6) = 922 MTopic2—>Mix(‘9) = Z:é)z2 P(w,|Z,)
Z,=1
Word No compact representation for message:

P(Mix = 6| w) = P(Mix = ) * M opig mix (0) * Mgpic, mix (6)
(Const [16¢ j[zg P(w, | Zl)J(ZQ P(w, | Z )j

Summation is intractable. (Exponential to #variables)

zzj‘ (Hgalﬂ[k Z,J+1[k= ZZ])P(W |Z )P(W |Z ) do

.|.I5(Mix|w)d6?—
9 const



Principle of Variational Approximation

Let X: observation, Z: hidden variables.

Finds an approximate distribution Q(Z) from a “Tractable Family” that most similar to the
target distribution P(Z]| X) measured by some distance like KL divergence.

Q*(Z)zar%(rzr;in KL( P(Z]X)[Q(2) )

Q'(Z)=argmin KL( Q(Z)[|P(Z|X) ) .
Q(2) Intractable Family

/ P(Z|X) q\b
Q(2)

How can we optimize Q(Z)
without computing P(Z|X) ?
Tractable Family



Agenda

* Global Approximation
(Mean Field Approximation)



Global Approximation

One of the most popular tractable family is Factorized Distribution, which assumes
the target (posterior) distribution P(Z]X) can be factorized into q(Z,)*q(Z,)...*a(Z,),
that is, variables are independent to each other.

Example:

A D G

b O @ SN

C F Factorized Distribution

Q(Z) = q(Zl)q(Zz)""q(ZN)
P(A,...,1) :%5(A,..., )

~q(A)q(B).....q(l)



How to Find Q*(Z) ?

Q(2)= agmin  KL(Q(2)|P(Z|X))

Q(Z)eTractableFamily

KL( Q@) PZ|X) )= EQ(Z)[Iogp(Z#lx)—log %}

= Eq)[109Q(2) —log P(Z | X)]
= Eq)[10gQ(Z) —log P(Z, X) +log P(X)]

= Eq)[l0g Q(2)]-Eqz,llog P(Z, X)]+log P(X)

( Tractable if Q(Z) is tractable) (intractable....
but Independent of Q(Z) )

The resulting problem is equivalent to:

P(Z,X)] Find Q(Z) that put “similar weight”

Q (Z)=  argmax EQ(Z) [log to P(Z,X) on which Z=z to happen.

Q(Z)eTractableFamily Q(Z)



How to Find Q*(Z) ?

P(Z,X)] Find Q(Z) that put “similar weight”

Q(Z)=  argmax Eqpllog to P(z,X) on which Z=z to happen.

Q(2)=0(21)4(Z,)--a(Zy) Q(Z)

We maximize w.r.t. one ((Z,), while fixing all the other.

max Eq,[logP(Z, X)]-Eq [109Q(2)]

aZ,)
= Eo| By aen [OP(Z, X)] | - E.p[log a(Z)] - > Eqe,ll0g aZ)]

Expectation over other variables Independent to q(Z,)
denote as log P(Z,, X) + const.

q(Z,)
-KL(q(Z,) | P(Z,, X))

~E,, ){ log P(Z,, X) } -+ const. q°(2,)=P(Z,,X) = logq(Z,)=logP(Z,, X)

$ logq"(Z,) = By, a2, [109 P(Z, X)]+const.
= > E[log f(Z,..Z, ) 1+const.

f e factors
relatedto Z;



How to Find Q*(Z) ?

Example: Given other q(B)...q(l) fixed, maximize w.r.t. q(A):
B E H
C F




How to Find Q*(Z) ?

Example: Given other q(B)...q(l) fixed, maximize w.r.t. q(A):
A D G log 5*(A) = Eq(B)...q(I)[Iog IS(A’---’ 1]
- Eq(B)[ Iog ¢(A’ B) ] + Eq(D)[ Iog ¢(A1 D)]
® &
C F

P(A,....1)= % P(A,...1)
~q(A)q(B).....q(l)

Iterate over all variables ..... until convergence !!

Guarantee convergence to stationary point of max E [log F)(Z’X)] (Why?)

Q) Q(2)

( Every update strictly increase objective function, since KL(q | | p)=0 only if q(z,)=p(z,)-
Since the maximum is bounded, we are guaranteed to convergence. )



Agenda

* Message Approximation
(Expectation Propagation)



Message Approximation

Example: A N*N Grid MRF Variable Elimination =» Clique Tree
(N=3) F,(A,B,C) F,(A,B,C,D,E,F) F,(D,E,F,G,H,l)
. > 2 A A—D Eliminate A,B,C D)—&
= . H e Me;5,(A,B,C) N Me;5¢3(D,E,F) s
M¢, r,(A,B,C) Me; ¢¢3(D,E,F)
. Eliminate G,H,I
C F - Eliminate D,E,F e minate e

The Elimination:

M. - (D,E,F)= > M. . (A B,C)F(AB,C,D,E,F)

A,B,C
is intractable. ( exponential in N )

However, can we approximate the message Mg, (...) to make

the elimination tractable ?
=» Assume it is factorized !!



Message Approximation

Example: A N*N Grid MRF Variable Elimination = Clique Tree
(N=3) F,(A,B,C,DEF)
A D G How to obtain the next
q(A) A,—D) q(D) “Factorized Message” ?
% H
B E H

q(B) (B)—LEJ q(E)

q(C) (C—F) q(F)

Approximate the message by a factorized distribution:
Me ¢, (AB,C)=q(A)a(B)q(C)

A, B, Cnot entangled !! q(A)q(B)q(C)F,(A B,C,D,E,F) forms a tree.

=» We can compute marginal by sum-product algorithm !!



How to obtain a Factorized Message ?

Fz(A' B,C,D,E,F) How to obtain the next
“Factorized Message” ?
q(A) LA/ 12/ a(D) min _ KL( g(D)J(E)G(F) | M, (D.EF)) ?
_ _> q(D)a(E)a(F) 273
qa(B) (B,—1E) q(E) =>» Need iteratively solve for q(D), q(E), q(F).
(Is there more efficient way ?)

WOLETRET 9B iy KUM.. (D.E P aD)aE)(F)) 2

q(D)a(E)q(F)

M(D,E,F)
KL(M (D,E,F)[|q(D)A(E)q(F)) = E,, o o
(M( )lla(D)a(E)a(F)) oen (100 4(DYA(E)a(F)
_ M(D,E,F) M (D) M (E) M(F)
_EM(D,E,F)(IOgM(D)M(E)M(F)) M(D)[ 0g q(D )]+EM(E)[IOg o(E )]+EM(F)[ 0g (F)]
=KL(M(D,E,F)[M(D)ME)M(F))+ D KLM(X)[ q(X))
const. T et q*(X) = M(X)

(set q(D), q(E), q(F) equal to the marginal. )



2-Layers Sum-Product Algorithm
with Approximate Messages

F,(A,B,C) F,(A,B,C,D,E,F) F,(D,E,F,G,H,I)

A < <

A —S Eliminate A,B,C D S G

M(A)M(B)M(C) M(D)M(E)M(F)

B) m— (8 <) (e —H
M’ (A)M’(B)M(C) el M’ (D)M’ ()M (F) —
Eliminate D,E,F - Eliminate G,H,I -

C C — F F — |

Elimination is easy since factors in every Clique form a “Tree”.
Computing Marginal (ex. M(D), M(E), M(F)) can be done by inner Sum-Product Algorithm.



Approximate Message: Expectation
Propagation

Previous example is a special case of “Expectation Propagation”. General Expectation
Propagation uses distribution come from Log-linear model (including Gaussian, Multinomial,

Poisson, Dirichlet Distribution):

) 0
QQ(X)=$exp{9Tf(X) ) :;exp{e f(X) | ~5100Z(8) = Eq, [ F(X)]

where f(X)" =[f,(X), f,(X),..., fo(X)]" are sufficient statistics( features) derived from X.

min KLCPEX) [[Qy (X)) = Eppq[l0g P(X)] = Ep g [10g Qy (X)]

const.

max Epp109Q, (X)] = Epgo 6" f (X)]-log Z(6)

0

a_%EP(X)[HTf(X)]—a—é;IogZ(Q):O B E.olf (X)]=Eq, [ f(X)]

Moment Matching!!
Match the Expectation of feature to the original message.



Approximate Message: Expectation
Propagation

Previous example is a special case of “Expectation Propagation”. A more general
version uses distribution come from Log-linear model (including Gaussian, Multinomial,

Poisson, Dirichlet Distribution):

Moment Matching:  Ep [ T (X)]= EQQ(X)[f (X)]

Example:
Moment Matching:

1. Q(X)is Multi(®): f (X) =X =k] Set equal Marginal Probability
Eo,00lIX =K1]=Q,(X =k)  Q,(X =k)=6, =P(X =k)

As previous MRF example.

2. Q(X) is Gaussian(p,2): f(X)=X f,(X)=XXT Moment Matching:
Set equal Mean, Variance.
Eq, 00X ]= 1 p=Ep[X]
T\ __ T
Faoa DX |2+ 2= B [XX 1 s

zvarP(X)[x]



Example:
Use EP Handling Continuous / Discrete BN

When BN contains both Discrete / Continuous Variables, messages cannot have a
compact representation.......

Gaussian Mixture of Gaussian

Mixture of Mixture
of Gaussian

(Exponentially Explode...)

@ Z,=1if O,is from X,
0 ------ =2 if O, is from Noise

Z, Z, Z,

Sensor
Observation ° ......




Example:
Use EP Handling Continuous / Discrete BN

When BN contains both Discrete / Continuous Variables, messages cannot have a
compact distribution.......

To prevent message grows to exponentially many mixtures of Gaussian....

: . |\/|_>(X1) = Z P(Zl)P(Xl)P(Oll Z, Xl)
Approximate M (X;) with Z, X -
y Mz, 271

single Gaussian Q(X,) by “Expectation Matching”:
W EN( X 1y, Z0) + Wo*N( X Wy, 25)

Ho =By o[ Xl =Wy +W, 14,
Eo =Vary, x,[X] Approxima'm@\i\l\l(%,\zm)
= Epzyl Var[X,] | Z,]+Vary [ E[X,] |Z,]
Z,=1if O,is from X,
= Epol Ty, 12,1+ Var,, [ 1, 12.] GO | 5 ok from e
N\
= W2, + WX, \&1 Z, Z
+ W, (24— o) (1 = g / /

W, (1t~ ) (11, ) e G ()




Agenda

Principle of Variational Approximation

Global Approximation
(Mean Field Approximation)

Message Approximation
(Expectation Propagation)

Comparison



Mean Field Approximation
vs. Expectation Propagation

Both of them find a tractable distribution (ex. Factorized distribution) Q(2) to

approximate the real distribution.

Mean Field approximate joint posterior distribution P(Z|X), minimizing

KL(Q[IP). (Why not KL(P||Q) ?*)

Expectation Propagation approximate messages, minimizing KL(P||Q).

(Why not KL(Q||P) ? 2)

Expectation Propagation needs only one-pass Sum-Product, while Mean Field

Approximation needs iterative maximization.
min KL(Q||P) has more False Negative. (Why 3)

min KL(P||Q) has more False Positive. (Why 4)

oasl Green: Mean Field

Red: EP

0.3F
Blue: Truth
0.25F

\
L
10 20



0
@log Z(0) = Eq, [ f(X)]

5 0

—log ()_Z(e)a e xp{607F(X) }

Z(Q)ZeXD{QTf(X)}*f(X) ZQQ(X)]‘(X) Eq, ool FOX)]




Particle-Based Approximate Inference
on Graphical Model

Reference:

Probabilistic Graphical Model Ch. 12 (Koller & Friedman)
CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 18,19 (Eric Xing)
Pattern Recognition & Machine Learning Ch. 11. (Bishop)



In terms of difficulty,
there are 3 types of inference problem.

W

0

./"“\

* Inference which is easily solved with Bayes rule.

I

]

L

* Inference which is tractable using some dynamic

o QTN

programming technique. I I

(e.g. Variable Elimination or J-tree algorithm )

Today’s focus

* Inference which is proved intractable f,I

(e.g. Approximation with Optimization or Sampling technique.)

@)

. . ® L

& should be solved using some Approximate Method. /V/ /L/J
e




Agenda

When to use Particle-Based Approximate Inference ?
Forward Sampling & Importance Sampling

Markov Chain Monte Carlo (MCMC)

Collapsed Particles



Agenda

* When to use Particle-Based Approximate Inference ?



Example : General Factorial HMM

A clique size=5,
intractable most of times.
(No tractable elimination exist...)

- ol




Some Model are Intractable for Exact

Inference

Example: A Grid MRF

:
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Some Model are Intractable for Exact

Inference
Example: A Grid MRF

@
%

—O—0O-C0-0
OO

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

OO0

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF

\f\/\()()

O—-CO—-0O000
O—CO—-C0O000

O—-—CO—-0O000



Some Model are Intractable for Exact

Inference
Example: A Grid MRF
Ki E ¢
/ ./ ./ \.
<\ () () (.
/ ./ ./ \. i
Approximate Inference
C\ ) ) Ve needed.
J/ ./ ./ .
Q () () (.
\_/ \_/

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.



General idea of
Particle-Based (Monte Carlo)

Approximatio
Most of Queries we want can be formed as: Intractable when K= oo, ]

Eoio[f (X)I=D > P(Xp X )* f (X, Xy )

X1

which is intractable most of time. Assume we can generate i.i.d. samples
X1, . X" from P(X), we can approximate above using:

A 1 N
f==3f(x™)
N n=1
It’s a unbiased estimator whose variance converges to 0 when N> oo,

ELf1=- ELY. f (X ™)1 =ELf (X)] i Var_not Refated o J

dimension of X.
Var=>0 as N> oo

Var[f]= %vﬂ[i f(X™)] :%Var[f (X)]



Which Problem can use
Particle-Based (Monte Carlo)
Approximation ?

* Type of queries:

— 1. Likelihood of evidence/assignments on variables
— 2. Conditional Probability of some variables (given others).

et Dechoblo fec : allostai hase]

Problem which can be written as following form:

Eoio[f(X)I=D > P(Xp X ) * £ (X, Xy )



Marginal Distribution (Monte Carlo)

To Compute Marginal Distribution on X,

P(Xk = Xk)

= Z P(Xy =X, X )= ZZ P(X, X )"HX, =%}
X _x

X X
= EP(X)[l{Xk =X 1]

Particle-Based Approximation:

f

1 Q (n)
N;l{xk :Xk}

( Just count the proportion of samples in which X,=x, )



Marginal Joint Distribution (Monte Carlo)

To Compute Marginal Distribution on ( X;, X; )

P(X;=x,X,;=X,)
=ZP(Xi =X, X, =xj,x_ij)zyyfp(xi,xj,x_k)*l{xi =% & X, =X}
X

X Xi X

= EP(X)[l{Xi =X & Xj = Xj}]
Particle-Based Approximation:

£ 1< n n
f:NZ_;l{Xi():xi,XJ():xj}

( Just count the proportion of samples in which X;=x; & X;=x; )



So What’s the Problem ?

Note what we can do is:

“Evaluate” the probability/likelihood P(X;=X,..., X =X)-

What we cannot do is:

Summation / Integration in high-dim. space: >, P(X,..., X).

What we want to do (for approximation) is:

“Draw” samples from P(X,,..., X;).

How to make better use of samples ?

How to know we’ve sampled enough ?



How to draw Samples from P(X) ?

* Forward Sampling
draw from ancestor to descendant in BN.

* Rejection Sampling
create samples using Forward Sampling, and reject those
inconsistent with evidence.

* Importance Sampling
Sample from proposal dist. Q(X), but give large weight on
sample with high likelihood in P(X).

* Markov Chain Monte Carlo
Define a Transition Dist. T(x—=2>x’) s.t. samples can get closer
and closer to P(X).



Agenda

* Forward Sampling & Importance Sampling



Forward Sampling




Forward Sampling

i.i.d Sample : (~b,e,a,j,~”m)




Forward Sampling

Samples: <€
(~b,e,a,j,~”m)

(~b,~e, a,~j, “m)

— Particle-Based Represent
of the joint distribution P(B,E,A,J,M).

P(M=m)= %il{M M —m}

What if we want

1. Collect al

2. Those sa

N
P(B=b,M =~m) :%21{5@ =b,M™ =~m}
n=1

samples from P(B, E, A | J=j, M="m ) ?

| samples in which J=j , M="m.

mples form the particle-based representation

of P(B,E, A | J=j, M=~m).

Disadvantage



Forward Sampling from P(Z|Data) ?

Forward Sampling N times.
Collect all samples (2", X") in which X;=1, X,=0, X,;=1, ...... X,=0.

. Those samples form the particle-based representation of P(Z| X).

How many such samples can we get ??
= N*P(Data) !! ( Less than 1if N not large enough......)



Importance Sampling to the Rescue

We need not draw from P(X) to compute E,,,[f(X)] :

Erool f (01= 2 POO* ()

_ PO wrixn e 1P wr x
ZQ( )* (Q( X) (X)) = Q(X)[Q(X) (X)]

- P(X(n)) > (n)

EP(X)[f(X)]_ Z(Q(X(n))) f(x )

That is, we can draw from an arbitrary distribution Q(X), but give
larger weights on samples having higher probability under P(X).



Importance Sampling to the Rescue

Sometimes we can only evaluate an unnormalized
distribution: ~
P(X) ,where P(ZX) = P(X)

Then we can estimate Z as follows:

P(X) P(X) ;  1EP(X™)
Z= ZP(X) ;Q(X)Q(X) Eaolgig)] ZanQ(/)‘<(n))

Note that we can compute 7 only if we can evaluate a normalized distribution Q(X) ,
that is, we have ZQ or Q(X) is froma BN.

. NB(X™Y, L
*f(X)] Eppi[F(X)]= Eﬁ(X)[f(x)]_nZ:;‘Q(x(n)) f(xX™)
Q(X) P(X) - 2 B N I'S(X(n))

= Q(X™)

oL (0]~ & Eg [




Importance Sampling from P(Z|Data) ?

1. Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.



Importance Sampling from P(Z|Data) ?

/A ° ° % """" @ w" =P(Data|Z)

X (1 0) (1 . =PAAPQOIB)PLA)..P(O]A)

1. Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.

2. Give each sample (Z(n), X(n)) a weight:

o _P(2) _P(Z)P(Data|Z)
Q(Z) P(Z)

=P(Data|Z)



Importance Sampling from P(Z|Data) ?

ABA,...,A w=0.01
/A Q @ * """ @ EA:B:A:...:Bi %03
(B,B,B,...,A) 1.0
X (1 0 1 0 N.=1.31
P(Data)=N_¢/N = 1.31/3
Sampling from P(Z), a normalized distribution obtained from BN
truncating the part with evidence.

Give each sample (Z(n), X(n)) a weight:

o _P(2) _P(Z)P(Data|Z)
Q(Z) P(Z)

N
The effective number of samplesis Ny => w®
=1

=P(Data|Z)

N N
( P(Data) = %Zw‘”) :%Z P(Data|Z™) )
n=1 n=1



Importance Sampling from P(Z|Data) ?

Al ws
' 0@ @ R

(B,B,B,..}A) 1.0

X (1 0 1 0 N_=1.31
P(Data)=N_ /N = 1.31/3

To get estimate of P(Z, | Data) :

R * * *
52, - B| Data) - 20L*0+03%0+10%1_ (o
131
R * * *
P(Z, = A Z, =B|Data) = 0.01 0+§).?3)11+1.o 0 023

Any joint dist. can be estimated. ( No “out of clique” problem)



Bayesian Treatment
with Importance Sampling

. l Ex. Pg(Y=1[|X) = logistic(8,*X+6, )

Y
N

Often, Posterior on parameters 0 :

P(Data|0)P(0)  P(Data|8)P(0)

POIDAR) =0 ey [ P(Data| 9)P(0) do

is intractable because many types of Pg(Data|6) cannot be integrated analytically.

N N
Approximate > P(Data| 0" =a) H9'” =a} P(Data|d=a)> Ko™ =a}
= — n=1

— — n=1
with: P(¢ =a|Data) = =

n=1

We need not evaluate “the integration” to estimate P(0|Data) using Importance
Sampling.



px)| | What's the problem ?
P(X) Q(X)
o Sloatete & o Val(X)

If P(X) and Q(X) not matched properly......
Only small number of samples will fall in the region with high P(X).

=>» Very large N needed to get a good picture of P(X).



How P(Z|X) and Q(Z) Match ?

When evidence is close to root,

forward sampling is a good Q(Z),

which can generate samples with Evidence
high likelihood in P(Z | X).

Q(Z) close to P(Z]| X)




How P(Z|X) and Q(Z) Match ?

When evidence is on the leaves, Q(z) far from P(Z|X)
forward sampling is a bad Q(Z),
yields very low likelihood=P(X|Z).

So we need very large sample size
to get a good picture of P(Z] X).

Evidence

Can we improve with time to draw from a distribution

more like the desired P(Z|X) ?
=2 MCMC try to draw from a distribution closer and closer to P(Z| X).

( Apply equally well in BN & MREF. )




Agenda

Markov Chain Monte Carlo (MCMC)



What is Markov Chain (MC) ?

0.25 0.7 A set of Random Variables:
X = (X, Xy)

Variables change with Time:
X® = (X,®,...X 1)

Possible /0

Configurations

of X which take transition following:

P(X(t+1) =x" | X(t) =x) = T(x2>x’)

There is a stationary distribution t;(X) for Transition T, in which:
—v'\ — —v) * ’
nA(X=x") =3, m{(X=x)* T(x=>x’)
(After transition, still the same distribution over all possible configurations X1~X3)

Ex. The MC (Markov Chain) above has only 1 variable X taking on values {x!,x?,x3},

(025 0 075
Thereisam; st. z,*T=[02 05 03]] 0 07 03 |=[02 05 03]=r
|05 05 0




What is MCMC
(Markov Chain Monte Carlo) ?

Importance Sampling is efficient only if Q(X) matches P(X) well.
Finding such Q(X) is difficult.

Instead, MCMC tries to find a transition dist. T(x2>x’), NP

s.t. X tends to transit into states with high P(X),
and finally follows stationary dist. t; = P(X).

Setting X(®=any initial value, we samples X1, X ... XM) following T(x=>x’), and
hope that XM follows stationary distribution m; = P(X).
If XIM) really does, we got a sample XM from P(X).

Why will the MC converge to stationary distribution ? there is a simple, useful
sufficient condition:

“Regular “ Markov Chain : (for finite state space) .
Any state x can reach any other states x’ with prob.>0. | C :;\ "w}
SN T _ AT [ BN P
(all entries of Potential/CPD >0 ) ,}: o] ANy, )
\_I_;"‘v._ll s M-’ij.
N, \_Hix_;- /,- e
= XM follows a unique 1, as M large enough. -
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0.15

0.05¢}

Example Result

=100 -
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How to define T(x—=2>x’) ? ---- Gibbs
Sampling

Gibbs Sampling is the most popular one used in Graphical Model.
In graphical model :

It is easy to draw sample from “each individual variable given others P(X,|X,)",
while drawing from the joint dist. of (X,,X,,...,X,) is difficult.

So, we define T(X=>X’) in Gibbs-Sampling as :
Taking transition of X, ~ X, in turn with transition distribution :

T, (X;2X), T,(X,2X,"), -..... T (x2x)
Where
Tk(xkexk’) — P(szxk’ |X-k) ( Redraw X, ~ conditional dist. given all others. )

In a Graphical Model, X X &

P(X,=x," | X,) = P( X,=x,” | Markov Blanket( X, ) ) X ><4 X X5 —:ﬁ\'tlﬁc;’:fe X



Gibbs Sampling for MRF

B e

Gibbs Sampling : t=1

1. Initialize all variables randomly. 0 — o

for t=1~M | |

for every variable X 0 :

2. Draw X, from P( X | N(X), ). a
end | |
end 0 /0
| |2(X=1Y)
P(X =1|N(X))= e
[Is(X=1Y)+ J]4(X=0Y) d(XY) 0
YeN(X) YeN(X)

0 5

1 1




Gibbs Sampling for MRF

Gibbs Sampling : t=2

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end
[Ts(x =1Y)
P(X =1|N(X)) = UGS,
( NED) [[#(X=1Y)+ []4(X=0,Y) d(Xy) 0 1
YeN(X) YeN(X)
For the central node: 0 5 1
1*9*9*1]
POX=1INCO)) = fgwgetrgagrreg 070 1 1193




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).

end
end

M_¢(X =1Y)

P(X =1|N(X))= )

( NG [[s(X=1Y)+ J]e(X=0Y)
YeN(X) YeN(X)

For the central node:

9*9*9*9

P(X =1|N(X))= 0.99

9*Q*Q*Q+1*¥1*1*]

d(Xy) O 1
0 5 1
1 1 |9




Gibbs Sampling for MRF

Gibbs Sampling :

1. Initialize all variables randomly.
for t=1~M
for every variable X
2. Draw X, from P( X | N(X),; ).
end
end

When M is large enough, XM follows stationary dist. :

70 (X) = P(X):ém(xc)

(Regularity: All entries in the Potential are positive.)

d(Xy) O 1
0 5 1
1 1 |9




Why Gibbs Sampling has mt; = P(X) ?

To prove P(X) is the stationary distribution, we prove P(X) is invariant
under T, (x,2x,):

Assume (X,...,X;) currently follows P(X)= P(X, | X )*P(X_),

1. After T (x,=2x.’), X still follows P(X_) because they are unchanged.

2. After T, (x,2x,.)=P(X,=x,/ | X,) (new state indep. from current value x, )

=> X, (t) still follows P(X, | X_,).

So, after T (X;2X,") , ceeeee, T{(X2X), X=(Xy,-.., X ) still follows P(X).

( Uniqueness & Convergence guaranteed from Regularity of MC. )



Gibbs Sampling not Always Work

When drawing from individual variable is not possible:
( We can evaluate P(Y|X) but not P(X]|Y). )

Non-linear Dependency :

P(Y | X)=N(W, +W,X +W,X? &%) P(X |Y) = P(Y | X)P(X)
P(Y | X) = log istic (w, +w,X,) [ P(Y [ X)P(X) dX
X
N .
P(Y | X)=N( ZK(X,X(”)), o2 ) (ker nel trick) ( Intractable Integration )
n=1

Large State Space : (InStructure Learning, statespace=G,,G,,G;....)

P(Data|G)P(G)
) P(Data|G)P(G)

P(G | Data) =

( Too large state space to do summation )

Other MCMC like Metropolis-Hasting needed. (see reference.)



Metropolis-Hasting ----MCMC

Metropolis-Hasting (M-H) is a general MCMC method to sample P(X]Y)
whenever we can evaluate P(Y|X). ( evaluation of P(X|Y) not needed )

In M-H, instead of drawing from P(X|Y), we draw from another Proposal Dist.
T(x2>x’) based on current sample x, and Accept the Proposal with probability:

1 , If P(X)TX—>X) >P(X)T(X— X)
P(accept fromxto x')=< P(x)T(X— X)
| P(X)T(X—>X)

Accept ?

E T(x=>x’) E



Example : P(X) = N(p,0?)

Proposal Dist. T(x=2>x’) = N( x, 0.2?)

P(accept from xto X') =<
N(X;u,0°)
| N(X;u,0°%)

(T(x—>x")=T(x'— x) this case. )

1, X -p]<|x—ul

0.W.

0.5F

0 0.5 | 1.5 2 25

( red: Reject )
( green: Accept )



Example : Structure Posterior = P(G|Data)

Proposal Distribution: ° TG -G °
T(G—G') » A
= P(add/remove a randomly chosen edge of G =>G") e G 9 O

1 , if P(Data|G') < P(Data|G)
P(accept fromGto G') =+
P(Data|G'")
| P(Data|G)

(T(G—>G")=T(G'—>G) this case. )



Why Metropolis-Hasting has mt; = P(X) ?

Detailed-Balance Sufficient Condition:

If mep(x’)*T(x’>x) = ny(x)*T(x>x’), then m.(x) is stationary under T.

Given desired n(x)=P(X), and a Proposal dist. T(x>x’),

we can let Detailed

Balance satisfied using accept prob. A(x2>x’) :

Assume P(x')T (X'—> X) < P(X)T (x —> x"), then:

We know P(X')T(X'—> X)*1=P(X)T(x > x')*

define A(x — X') =+

P(X)T (X' Xx)
P(X)T(x — x')

(1, P(X)T(X'—= X)>P(X)T(x—> x')
P(x)T (X'— X)

T(x=>x’)

, O.W,
| P(X)T (x— X') “T(x)

@0 1 (x’)



How to Collect Samples ?

Assume we want collecting N samples:

—

000000000

1. Run N times of MCMC and > MC,

(o)
|
. M
collect their Mt samples. N —

0000000000

> MC,

—

i
M

2. Run 1 time of MCMC and collect (M+1)t" ~ (M+N)t samples.

00000000000000000000000000000000000O0

| — MC,
M M+N

What’s the difference ??




How to Collect Samples ?

Assume we want collecting N samples:

Cost = M*N samples

—

. 000000000 0 T
1. Run N times of MCMC and —> MC,
. M + Independent
collect their Mt samples. N — P
Samples
000000000 O _
— —> MmC,
M

2. Run 1 time of MCMC and collect (M+1)t" ~ (M+N)t samples.

Cost=M + N samples

00000000000000000000000000000000000O0

| — MC,
M‘ ,M+N

|
Correlated Samples



Comparison

> MC,

i P>
N i M |\/|+N|V|C1

> MC
M N

E[f]= ELS Zf(x(”)) Zf(x(”)) ZE[f(X(”))]—E[f(X)]

No Independent Assumption Used =2 Unbiased Estimator in both cases.

For simple analysis, Take N=2: Var[f] :Var[l(f (XD)+ £ (X )]
2

£ 1 1 2
var[f]=Var[Z (F(X®)+ £ (X )] = L (Var[f (X ©)]+Var[ f (X @)]+2Cov[ f (X ), £ (X @)])
Var[ f (X)] 4

:%(Var[f(x(l))]+Var[f(X(z))]): >

_Var[f(X)]+ cvar[ f(X)] S Var[ f (X)]
- 2 pf(X(l)),f(X(z)) 2 2

Practically, many correlated samples (right) outperforms few independent samples (left).



How to Check Convergence ?

80 b S @ . i; g %‘f o ‘;& {:’CQ% ? &l% o : \g‘:& @a od
- - ) 5’% ia“ e o%} cc:éfg;}c._ 'ﬁo“ ')(\; o \?,"’& @. % %}
. o g s W, @ = W A « F ug e v
0 . 8 Pl @ c . »!:" % B 2 ’ . .:gi %3%) ° '85
Mo 5w a0  aw a0 sw sw 7w S — 0 20 W0 40 500 B0 700 M5 0 10 X0 W0 40 00 0 700 o 0 100 20 30 40 S0 60 Ll
00000000000000000000000000000000000
| i > MC1 )
MV M+N __ Should be consistent
if converge to 1,
50 &0 000 @;',é‘ @: %, s @g@ fn &0 @ % w "?
- s FL S | mey A dR o g e e o
= - Bo @ e I B - . W &
d of °® o(.gi_a fﬁ‘; - I n; s \% ﬁgﬁz_‘ B 1 «;‘% Dﬁu @ .
ooooooooooooooooooooooooooooooooooo
1
| > MC,
M M+N

1 K
Check Ratio :1/% close to 1enough. (assume K MCs,each with Nsamples.) f = EZ K
k=1

K K N
B =Var. between MC—KAZ )> W =Var.within MC = 1)22(f(x(k ") f,)?
k=1 - k=1 n=1



The Critical Problem of MCMC

When p21 , M2 , Var[.] not decreasing with N
=2 MCMC cannot yield acceptable result in reasonable time.

O

& N

o

Taking very large M to converge to i, .

P(X)




How to Reduce Correlation (p)
among Samples ?

Taking Large Step in Sample Space :

* Block Gibbs Sampling

* Collapsed-Particle Sampling



Problem of Gibbs Sampling

Correlation (p) between samples is high,
when correlation among variables X,~X, is high.

Y =

X 0

Taking very large M to converge to ;.



Block Gibbs Sampling
Draw “block” of variables jointly: P(X,Y)=P(X)P(Y|X)

Marginal Y
N
X 100 | 100
QR
(o Je)
13
fe) o

Converge to r; much quickly.



Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

N YA

e s
S @%ﬂ_%@_
7 N O O U Y\/Y\\Y
O—C0—C0—00——20 AN .
O—"C0—0-00 W\




Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.

— ~—
O

e
o e
o e
o e

|
J/ N N S\ Y\/Y\\Y
OO0 ST
00O 00 A

X X, X3



Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.

\

\

00O O Qo)
BRSO =
OO ARG ARG
OO0 O AN .
00O 00 A




Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.

AN

OHO-O101©

cHoFOeHe
CHOFOAOHD
=
CHOFOISNG
CHOHOHO




Block Gibbs Sampling

Divide X into several “tractable blocks” X, X,, ..., X;.
Each block X, can be drawn jointly given variables in other blocks.

Given samples on other blocks,
Drawing a block jointly from is tractable.

A I\
ﬁ
%

d

On @,

On @,

O

\93
.

O
O
O
~
O
O




Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

O
on @
ii
</

(©
©

(O
O

iiif

E-OrC
E-1OrC

/
©
Draw A from: @

M(A)=2f(A.B)M(B)  faB) f(B,C) f(C,D) f(D,E)

S— |
S— |
—— |



Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

O
on @
J&

i@f |

[ ©
©

B
0
B

@O
- 1OrC

|\
©
Draw B from: é

f(A=a,B)M(B) f(a,B) f(B,C) f(C,D) f(D,E)

S— |
S— |
—— |



Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

)
O
s
Je

(©
©

e
1 [

(O
B

iiif

- OrC
E-1OrC

|\
©
Draw C from: é

f(B=b,C)M(C) f(a,b)  f(b,C) f(C,D) f(D,E)

ZI
O



Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

)
O
s
Je

(©
©

d @
1 -

iiif

- OrC
- 1OrC

|\
©
Draw D from: é

f(C=c,D)M(D) f(a,b)  f(b,c)  f(c,D) f(D,E)
)

£l
O



Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

)
O
s
Je

(©
©

d @
1 -

iiif

- OrC
- 1OrC

|\
©
Draw E from: é

f(D=d,E) f(a,b) f(b,c) f(c,d) f(d,E)




Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

)
O
s
Je

(©
©

d @
1 -

iiif

- OrC
- 1OrC

|\
©
Draw E from: é

f(D=d,E) f(a,b)  f(b,c) f(c,d) f(d,e)




Block Gibbs Sampling by VE

Drawing from a block X, jointly may need 1 pass of VE.

(0—0—0—0—Q ]
00—

\

Draw Another Block.

O

SR
SR




1. Intractable
with Exact Inference.

2. Gibbs Sampling
may converge too slow.

Divide into 4 blocks:

Student type
KC type
KState
Problem Type

P WNR




N1/

Student:

Indep. to each other
given samples on
other blocks.

>
Easy to Draw Jointly.

Divide into 4 blocks:

Student type
KC type
KState
Problem Type

P WNR




KC: Divide into 4 blocks:
Indep. to each other 1. Student type
given samples on 2. KCtype
other blocks 3. KState

' 4. Problem Type

>
Easy to Draw Jointly.




VALV

Problem Type: Divide into 4 blocks:
Indep. to each other 1. Student type
given samples on 2. KCtype
other blocks 3. KState

' | ' ' 4. Problem Type

>

Easy to Draw Jointly.




KState:

Chain-structured
given samples on
other blocks.

>

Draw jointly using VE.

Divide into 4 blocks:

1. Student type
2. KCtype

3. KState

4. Problem Type




Agenda

* Collapsed Particles



Collapsed Particle

Exact: Ep(x)[f (X)]= Z P(X)™* f(X)

~ ]_ N .
Particle-Based: f:_N E f(X( ))
n=1

Collapsed-Particle:

Divide X into 2 parts {X, X,} , where X, can do inference given X

Eroo L F(X)1=2 POX)* F(X)=2 P(X,) 2 P(X4 | X,)* f(X)

ErolF 1= (ZPOX X)X X))

n=1

( If X, contains few variables, Var. can be much reduced !! )



Xd can be exactly
inferenced given Xp.

Divide into {Xp,Xd}

Xp:
Student type
KC type
Problem Type

Xd:
KState




Collapsed Particle with VE

~

V
‘GX

V

A~

f(S,KC=k, K1)

To draw X, ,

Given all other variables in Xp
sum out all other variables in Xd

f(S,KC=k,K1,K2)| [S]kcC

M(K1,T1=t1) T

Draw S (given KC=k & T=t) from:

M(S)=
2«1 K2 F(S,KC=k,K1,K2) M(K1,T1=t1) M(S, KC=k,K2)

K1 K2

M(S,KC=kc,K2)

e

K1
T1

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collapsed Particle with VE

To draw X, ,

i
g

Given all other variables in Xp
sum out all other variables in Xd

f(S=s,KC,K1)

M(S=s,KC,K2)

f(S=s,KC,K1,K2)| S|KC
K1 K2

<€

M(K1,T1=t1) T

Draw KC (given S=s & T=t) from: K1

M(KC)= T1
2 k1 Kk F(5=5,KC,K1,K2) M(K1,T1=t1) M(S=s,KC,K2)

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collapsed Particle with VE

To draw X, ,

Given all other variables in Xp
sum out all other variables in Xd

>

S KC
K1 K2

M(K1,S=s, KC=k) l

Draw T1 (given S=s & KC=k) from:

— |R
||—\||—\

M(T1) = >, M(K1,5=s,KC=k) F(K1,T1)

/ N\

S KC
K2 K3

K2
T2

K3
T3

f(T3)



Collect Samples

Xp Xd
(S, KC, T1, T2, T3) (K1, K2, K3)

(Intel, Quick, Hard, Easy, Hard) ({1/3,1/3,1/3},1{1/4,1/4,1/2},{1/2,1/2,0})
(Intel, Slow, Easy, Easy, Hard) ({1/2,1/2,1/4},{1/5,4/5,0}, {1/4,1/4,1/2})

(Dull, Slow, Easy, Easy, Hard) ({1/3,1/3,1/3},{1/4,1/4,1/2},{1/2,1/2,0})

Average Average

épm[f(xnﬁz (TP(X, | XY (X, X))



