Exact Inference
on Graphical Model

Reference:

Probabilistic Graphical Model Ch.9, Ch. 10 (Koller & Friedman)
CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 8,9,10 (Eric Xing)

Probabilistic Inference

* A Graphical Model specifies a joint distribution P,(X) over a
collection of variables X.

 How can we answer queries/questions about P(X) ?
That is, how can we inference using P(X) ?

* Type of queries:

— 1. Likelihood of evidence/assignments on variables
— 2. Conditional Probability of some variables (given others).
— 3. Most Probable Assignment for some variables (given others).

Query 1: Likelihood

Given Evidence E = {X;=x,..., X;=Xp} specifying some variables’
value and let Z={Z,, ..., Z,} be variables unspecified , the likelihood
of a model M yielding this evidence can be computed by:

likelihood of E
=Py (X) =) . Py(Zy Zig, Xoes Xp)
Zl ZK

Naive algorithm yield O(|Z|¥) complexity...

Query 1: Likelihood

likelihood of E=) .> Py (Z;,.... Z¢, Xy Xp)
Zy

Zl
* This measure is often used as criteria for Model Selection.

Ex. In speech recognition,
/: words (unspecified) , X: wave sample (specified evidence E)

How likely a person M=(Language, Pronunciation)

produce this wave sample can be Computed by: re u

A person’s “Language Model” P(Z,,,|Z,)

likelihood of M produce E
= PRy (X) @

A person’s v v v

— ZZZ P, (Z,,Z,, Ly, X5 Xy, X3) “Pronunciation X, X, X
M pewp oy
! I

Zy Z, Z Model”
N , ~ L pix,[z,) -
- Summation over all possible words Z producing X M

Query 1: Likelihood

likelihood of E
=P, (X) = Z ZP (24, s Xp)

Taking special case E = empty, it can also be used to compute
Normalizing Const. = Z in MRF as following :

(let P(Z,..Z)= [] #(C) beunnormalized dist. , P(zl...zK)zéﬁ(zl...zK))

cligueCinM

Query 2: Conditional (marginal) Probability

* Given Evidence E = {X,;=x,,..., X,=X,} and some other variables
/={Z,, ..., Z,} unspecified , Conditional Probability of Z is given
by:

P(Z, X)
P(X)

P(Z|X)= , where P(X) s given by Query 1l

 Sometimes we are interested in only some variables Y in Z,
where Z={Y ,W }, then conditional (marginal) prob. of Y is

PEY [X)=) P(Z|X)=)..> P(Y,W.. W, |X)

Wy Wk

Naive summation over uninterested variables W
yield O(|W|*) complexity...

Query 2: Conditional (marginal) Probability

Ex. In speech recognition,
/: words (unspecified) , X: wave sample (specified evidence E)

_P(Z.X)

P(Z| X) , Where P(X)Is given by Query1l

A word sequence Z,...Z, ‘s prob. given the wave sample X,... X,

If we only care the 15t word, then: o ;
A person’s “Language Model” P(Z,,,|Z,)

P(Z, | X) = P(Z,,Z,,Z, | X
(Z,1X) ;;(| X) @

A person’s Y v v

“ H H
Pronunciation X, X, X3
[l o

The 15t word Z,’s marginal distribution
given the wave sample X,... X,
(naive method is intractable for large K)

Model”
P(xtlzt)ml- o)

Query 3: Most Probable Assignment

* Given Evidence E = {X,;=x,,..., X,=%,} and some other variables
/={Z,, ..., Z,} unspecified , Most Probable Assignment of Z is

given by:
MPA(Z | X)=argmax P(Z| X)
Z
_argmax PXI2P@)
z P(X)
* MPA s also called “maximum a posteriori configuration”
or “MAP inference”.

=argmax P(X |Z)P(Z)

Note: | 1. Even if we have computed Query 2 = P(Z|X), it’s intractable to
enumerate all possible Z to get argmax, P(Z| X).

rarg male P(Zl | X)
2. MPA cares “Joint Maximum”,
not “Marginal Maximum”.

argmax P(Z| X) = <......
’ largmax, P(Z | X)

Query 3: Most Probable Assignment

We often just want to “decode words ” from the wave sample,
That is, we care Z* = argmax, P(Z| X) but not P(Z| X) itself.

Marginal Maximum:

(arg rT]a‘XZI P(Zl | X)
sargmax,, P(Z,| X) => maygive Z, ='l', Z,="comes', Z,="front'
\argmax,, P(Z,| X) (inconsistent decoding)
Joint Maximum (MPA) : A person’s “Language Model” P(Z,,,|Z,)
argmax P(Z,,Z,,2,| X) @G
21.22:24 A person’s ‘1’ \1’ \L
==> may give 'lI' '‘come’ ' from' “Pronunciation X,
Model”

(consistent decoding) P(X,1Z,) I . I MHI

In terms of difficulty,
there are 3 types of inference problem.

Y
A

* Inference which is easily solved with Bayes rule. S

I

]

Today’s focus

L

* Inference which is tractable using some dynamic

programming technique. I I

(e.g. Variable Elimination or J-tree algorithm)

o o%.,

* Inference which is proved intractable J,I

(e.g. Approximation with Optimization or Sampling technique.)

@)

. . ® L

& should be solved using some Approximate Method. /V/ /L/J
i

Agenda

Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

Extend the idea of “VE” to general Factor graph with concept of
“Clique Tree”.

See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Variable Elimination: Inference on a Chain

= O~ O—Ce o~

How to get P(E=e) ?
P(E=e)=> > > > P(AB,C,D,E=¢)
A B C D

By structure of the BN:
P(AB,C,D,E)=P(E|D)P(D|C)P(C|B)P(B| A)P(A)

P(E)=2.>.2 .2 P(EID)P(D|C)P(C|B)P(B| A)P(A)

We can put summation as right as possible...

Variable Elimination: Inference on a Chain

= O~ O—Ce o~

How to get P(E=e) ?
P(E=e)=> > > > P(AB,C,D,E=¢)
A B C D

By structure of the BN:
P(AB,C,D,E)=P(E|D)P(D|C)P(C|B)P(B| A)P(A)

P(E)=2.>.2 .2 P(EID)P(D|C)P(C|B)P(B| A)P(A)

=>'P(E|D)> P(D|C)> P(C|B)> P(B|AP(A)

Variable Elimination: Inference on a Chain

F(A,B)

CaO—C e 3~~~

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

F(A,B)

A Table size=|A| |B|

Variable Elimination: Inference on a Chain

M(B)
A~

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

ZAF(AIB)=M(B)
{ Eliminate “A”. ATatﬁ

Variable Elimination: Inference on a Chain

F(B,C)
AT~

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(C[B)*M(B) =F(B,C)

{ A Table size=|B| | C].

Variable Elimination: Inference on a Chain

-S>

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

{ Eliminate “B”. A Table size=|C]|.

25 F(B,C)=M(C)

Variable Elimination: Inference on a Chain

F(C,D)
S-S
P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(D|C)M(C) = F(C,D)

{ATabIe size=|C||D].

Variable Elimination: Inference on a Chain
M(D)

3-8 -
P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

ZC F(CID)= M(D)

[Eliminate “C”. A Table size=|D].

Variable Elimination: Inference on a Chain
F(D,E)

-6 XD

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

P(E|D)M(D)=F(D,E)

{ A Table size=|D| | E|.

Variable Elimination: Inference on a Chain
M(E)

e

P(E=e)=>>>> P(AP(B|A)P(C|B)P(D|C)P(E =e|D)
=Y P(E|D)> P(D|C)> P(C|B)> P(B| A)P(A)

2o F(D,E)=M(E)=P(E)

[Eliminate D. Get the answer.

Both Time & Space Complexity are O(|A||B|+|B]||C|+|C||D|+|D]||E|) = O(|Range|?)

Naive method complexity = O(|A||B||C||D||E|) = O(|Range|N)

Variable Elimination: Inference on a Chain

How about inference on Undirected Model (MRF) ?

P(AB,C,D,E) = %¢(E, D)¢(D,C)a(C, B)g(B, A)

P(E)%%%%;ma D)#(D,C)4(C, B)¢(B, A

-~ S HE D)L 4D,0) Y HC. B 4B, A

The same idea applies !!

Variable Elimination: Inference on a Chain

f(A B) f(B Q) f(C, D) f(D E)

From now on, we won’t distinguish between BN & MRF.
The same algorithm applies to them in a “Factor View”.

P(AB,C,D,E) = %¢(E, D)¢(D,C)o(C,B)a(B, A)

P(AB,C,D,E)=1*P(E|D)P(D|C)P(C|B)P(B| A)P(A)

Al viewed as: % f(E,D)f(D,C)(C.B)f (B, A)

Variable Elimination: Inference on a Chain

F(A,B)
Qoo o o e
f(A,B) f(B,C) f(C,D) f(D,E)

f(A,B)=F(A,B)

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

f(A,B)

2aF(A,B)=M(B)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

F(B,C)
o OO OO
f(A,B) f(B,C) f(C, f(D,E)

M(B)*f(B,C)= F(B,C)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

f(A,B) f(B,C) f(C,D) f(D,E)

ZBF(BIC)=M(C)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

M(C)*f(C,D) = F(C,D)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

M(D)
D
f(A,B) f(B,C) f(C,D) f(D,E)

ZCF(CID)=M(D)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

F(D,E)

f(A,B) f(8,C) f(C,D)l f(D,E)

M(D)*f(D,E) = F(D,E)

Product !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

2oF(D,E)=M(E)=P(E)

Sum !

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(F,G,H)=f(F,G,H)

G H Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination:

Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

>

M(F) = 3¢, f(F,G,H) Sum !

@d@ Elimination Order:

Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

S
(DolTHore(

& D

F(B,F)=f(B,F)M(F)
Product !

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

(Dol

M(B)=2. F(B,F)
Sum !

@ H Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(A,B)=f(A,B) e
0L OO O

@ M Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

Sum ! e

M’(B)=5,F(AB) T

S ONOTO

M(B)

@ M Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

¥

GO c >

F(B,C)=M(B)M’(B)f(B,C)
Product !

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

&
D@D

1 M(C)=3,4F(B,C)

G Sum !

c ° Elimination Order:

Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

; F(C,D)=f(C,D)

] M(C)

° ° Elimination Order:

Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

@ Sum !
M’(C)=3,F(C,D)

CO-o-GO-a G

] M(C)

° ° Elimination Order:

Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

Product !
F(C,E)=f(C,E)M(C)M’(C)

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

If the factor graph is a tree without cycle,

then VE can be applied in a similar way.
Sum !

M(E)=2F(C,E)=P(E)

Elimination Order:
Let E be the root ;
Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

Follow the Elimination Process, we can build a “Clique Tree”. In which:

1. Everynodeis a F(.) before elimination.
2. Everyedgeis a “message” M(.) passed from F(.) to F(.).

2cF(C,E)=P(E)

F(C,E)

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

Only this part different !!

If we want to know P(D):

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

If we want to know P(B):

F(B,F)

| M(F)

2F(B,F)=P(B)

\ _/

S
M(.)

The queried node should get
messages from all nodes on
the tree to get the marginal
distribution.

Variable Elimination: Inference on a Tree

Why is Cligue Tree useful ?

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

F(A,B)) g F(B,C)

<o
F(B,F)
e I

F(F,G,H)

P(B,F)=M(B)f(B,F)M(F)

F(C,D)

15t pass:
Take a node as root.
Run Sum-Product from leaves to root.

2" pass:
Run Sum-Product from root to leaves.

All marginal dist. can be derived from

1. Multiply all M(.) from neighbors
by f(.) on this node.
2. Eliminate unwanted variables.

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

Complexity :

Elimination on a node F(A,B,C)
takes O(|A| |B||C|) space & time.

So the algorithm’s bottleneck is on
bottleneck: elimination for the “Largest Node”

O(|F| |G| |H]) on clique tree.
time & space.

Agenda

Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

Extend the idea of “VE” to General Factor Graph with concept of
“Clique Tree”.

See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 1;: BCDEA

P(F)

= %ZA:;ZD:;; F(AF)T(AE)T(AD)T(AC)T(AB) Maximum Node Size=2

_ %Z f(AF)Y f(AE)Y f(AD)Y f(AC)Y f(AB)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(B,C,D,E,F)
ABCDEF

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(B,C,D,E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order2: ABCDE

M(CI DI E)F)
BCDEF

M(B,C,D,E,F)

ABCDEF

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(CI DI EIF)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CIDIE)F)
BCDEF
M(B,C,D,E,F) CDEF

ABCDEF

M(D,E,F)

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(D,E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CIDIEIF)
BCDEF
M(B,C,D,E,F) CDEF
ABCDEF
M(D,E,F)
MI(E, F)
///];EF

P(F)
=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:

Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(B,C,D,E,F)

M(F)

BCDEF

ABCDEF

M(E,F)

M(CI DI EIF)

CDEF

M(D,E,F)

///BEF

P(F) <::EE::>

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

M(F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 2: ABCDE

M(CID’E’F)
BCDEF
© Gowesl e
ABCDEF
M(F) M(D,E,F)

N M(E,F)
P(F) @E/ 0w

=%ZZZZZ f(AF)f(AE)f(AD)f(AC)f(AB)

Maximum Node Size=6

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
Different “Elimination Orders” have different effect.

Elimination Order 1: BCDEA

&
YD (O

A

In “Tree” structure factor graph, the optimal “Elimination Order”
is just “Elimination from leaves”.

If factor graph is not Tree, what’s the best elimination order ???

Variable Elimination: Inference on General Graph

When factor graph is not Tree, we want a Elimination Order “introducing
as fewer edges as possible” (then we will have factor size smaller).

Eliminate “C” =» fill 1 edge Eliminate “A” = fill 2 edges
Qsis better !!}

f(C,D)
M(A,D,E)

(B g5
f(C,E)

M(AD,E)=> f(AC)f(C,D)f(C,E) M(B,C,D,E)
C

Produce a factor of size 3 - ZA: f(AB)f(AC)T(AD)f(AE)

Produce a factor of size 4

Variable Elimination: Inference on General Graph

Unfortunately, Finding Elimination order with
“smallest maximum factor” is NP-hard.

It’s fortunate that greedy algorithm works quite well in practical,
in which, we just search for the “least-cost” variable to eliminate:

1. If variables have same cardinality
=>» cost = (# of edges introduced by elimination).

2. |If variables have different cardinality
=» cost = (# of edges)*(weight by cardinality of node involved)

Example: Factorial HMM

Language Model of “words sequence”
Speech Recognition: a e e
Pronunciation

X1 X, X3
Decoding 2 person’s speech M‘"‘”m’“ﬂ M"“"‘":‘ﬂ I'I'“ |'||'|"| N m
from waves:

Language Model of 15t person

e Language Model of 2" person

X Superposition of “2 waves”

oo

Example: Factorial HMM

Because a factor is a “clique” in undirected representation,
we transform Factorial HMM into “undirected” before running VE.

X,

Review:

factor graph e - e moralize e'e
-~ P(C|A,B)
© © ~

Vv

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Z,,Y,, X,) = Z F(Y, Z) 1YL Y,) T(Y, X))

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 2 edges !!

M(Z,,Y,, X,) = Z PO, Z) 1YL Y,) TOY, X))

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M (Y., Z,, X,) = Z F(Y,2)1(2,,2,)1(Z,, X))

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 2 edges !!

M (Y., Z,, X,) = Z F(Y,2)1(2,,2,)1(Z,, X))

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M (Y1’ Z1) — z f (Y1’ X1) f (Z1’ Xl)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. no edges !! = Let’s eliminate !!

M (Yl’ Z1) — Z f (Y1’ X1) f (Z1’ Xl)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(z1,22)
M(Z,,Y,,Z,) = 3 M(Y,.Z,) £(2,,2,)f(2,,2,)
Z,

f(z2,23)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 3 edges!!

M(Z,.Y,,Z5) = Y M(Y,,2,) £(2,,2,)F(Z,, Z,)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

(21,22)
M (Yl’ Zz) = Z M (Y1’ Zl) f (Zl’ Zz)
Zy

M(Y,,Z,) M(Y,,Z,) | M(Y,,Z,)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,22)
Intro. 1 edge !!

(the best)

MY, Z,) = ZM (Y1, Z,) 1(Z,,2,)

M(Y,Z,) [M(YyZ,) | M(Y;,Z5)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y,Z) | M(Y,Z) | M(Y,2Z,)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Intro. 0 edge !!

(the best)
o
M’(Y2,22) M(Y3,Z3)
(&—2)

M(Y,Z,) [M(YyZ,) | M(Y;,Z5)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

Example: Factorial HMM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(Y2,Y3)

“
M(Y3,23)
M(Y2,Z3) e M(Y,,Z,)

M(Y,, Z;) :ZMI(Yzizz)M (Y,,Z,)1(Z,,Z5)

Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

15t pass:
Take a node as root.
Run Sum-Product from leaves to root.

2"d pass:
Run Sum-Product from root to leaves.

All marginal dist. can be derived
from

1. Multiply all M(.) from neighbors
by f(.) on this node.
2. Eliminate unwanted variable.

Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

Assume we want : P(Y,Y,)

P(Y.,Y,) = Zb(Ysz’Zz)

Y, Y, are

dependent. qp

=>»There must be a node in
clique tree containing (Y,,Y,).

Example : General Factorial HMM

A clique size=5,

intractable most of times.
(No tractable elimination exist...)

y

Moralize

™\

Some Model are Intractable for Exact Inference

Example: A Grid MRF

4

./

()

B

()

./

()

:

C— D
¥ \Y
e Wg
¥ \Y
e Wg
¥ \Y
e Wg
¥ \Y
e Wg
¥ \»

NN

Some Model are Intractable for Exact Inference

Example: A Grid MRF

J ./ ./ ./ \S
(\ () () () [>
v ./ ./ ./ \S
(\ () () ()
/ o/ ./ o/

() () [
_/ -/

O

Some Model are Intractable for Exact Inference

Example: A Grid MRF

J ./ ./ ./
(\ () () ()
v ./ ./ ./
(\ () () [
/ o/ ./ \S
() () [
_/ -/

O

Some Model are Intractable for Exact Inference

Example: A Grid MRF

J ./ ./ ./
(\ () () [
v ./ ./ S
(\ () () [
/ o/ ./ \S
() () [
_/ -/

O

Some Model are Intractable for Exact Inference

Example: A Grid MRF

i E ?
-~ g g S We will introduce
C\ N N - Apprgxupate Inference
v ./ ./ . for this kind of problem

later.

<\ [[[
/ ./ ./ \.
Q () () [

_/ _/

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.

Variable Elimination: Dealing with Evidence

What if some variables X={X,...X,} are given in Evidence :

Given Evidence { B=b }:

f(A,B=b) f(B=b,C) [

Variable Elimination: Dealing with Evidence

What if some variables X={X,...X;} are given in Evidence :

Given Evidence { B=b }:

© - N

f(A) f0) & A model with evidence

@.D - G - » equivalent to another model

without evidence.

f(F) \ Y,

To infer P,,(Z| X), we transform
V1 to another model M’
and infer P,.(Z).

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 , , |

P(X , Z) — E f (Zl’ >\1) f (21’ >\2) f (Zp X3)
f(Z %) T2 X) T2 %) ()
f(zs’ <1)f(Z3,X2)f(Z3,X3) »‘%;’4\‘
£(2,,2,)f(Z,,Z.) X, X, X,

/

But given X1~X3, we actually run inference on another model M".

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

P(X =x2) =2 1,@) (@)1,

fx(zz)fxl(ZZ)fx”(ZZ) ee@
f(Z)1,(Z:)1,"(Zs) ===

f (Zl’ZZ) f (ZZ’Z?’)/7

But given X1~X3, we actually run inference on another model M".

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

P(X =X,2) =2 1,2, Z) 1/ (22,2,

But given X1~X3, we actually run inference on another model M".

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1~f Z0.Z) 1.2, 2,)

P(Z|X =X)= PF(>>((x: X’)s)
- %ZZZf "(2,,2,)%,'(Z,.Z.)
l | | Z1 722 Z3 e\g“«@
:ﬂ fx (Zl’ZZ) fx (22’23) / Sl

X, X, X3

/

But given X1~X3, we actually run inference on another model M".

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 1 1
P(X = X’Z) B TZ» fx (Zl7ZZ)fx (ZZ’ZB)

P(X = x) ;ZZZ f.'(2,,Z,)1,'(Z,,Z5)

Z1 72 Z3

P(Z|X =x)=

1 ., .
:Z'—(X) fx (Zl’ZZ)fx (Zz’zs) W

/

But given X1~X3, we actually run inference on another model M".

le,
X, X, X3

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

1 1 1
p(x — X,Z) B E fx (erzz)fx (22123)

P(X = x) %;;; f,'(2,,2,)1,'(Z,,Z;) Q e @
1

=700 f.'(2,2,)f.'(Z,,Z;)

/
New normalize const. can be computed Using VE. /

=
But given X1~X3, we actually run inference on another model M".

P(Z|X =x)=

M’ is much more tractable.

Variable Elimination: Dealing with Evidence

Even if P(Z|X) can be inferred efficiently, “learning P(X,Z)” is intractable.
One solution is model P(Z|X) directly, yielding “CRF” model.

P(X’Z):% F(Zy, X)) T(Z1, X)) T(Z1,Xy) Q‘e‘e
(20 X) (20 X) (20 X0) =S
f(Z,, X)) F(Zs, X,) F(Zs, X,) Xg X, X3

1(Z,,2,)1(Z,.Z,) Intractable VIRF model

1

P(Z | X) :m fx'(Zl,Zz) fxl(221z3)

Tractable CRF Model

Agenda

* Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

* See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Query 3: Most Probable Assignment

* Given Evidence E = {X,;=x,,..., X;=X,} and some other variables
/={Z,, ..., Z,} unspecified , Most Probable Assignment of Z is
given by:

MPA(Z | X)=argmax P(Z| X)
Z

_ P(X[Z)P(Z) _
—arggnax PO _arggnax P(X|2)P(2)

(arg male P(Zl | X)
argmax P(Z| X) # <......
’ largmax, P(Z, | X)

What’s the different ?

MPA Goal:
max P(Z|X) = max... max P(Z,..Z, | X)

Likelihood Goal::
(Solved using VE) P(X) = ZZ P(Z,..2Z,,X)

Zy Zy

Exploring the similarity between “max” & “3” is the key
to solve MPA using VE.

What’s the different ?

Review: (4>~ O>—CeOo—Coo—CED
P(E=e)=> > > Y P(E=¢|D)P(D|C)P(C|B)P(B|AP(A)

D C B A

=>"P(E|D)>_P(D|C)Y_P(C|B)> P(B| A)P(A)

M(B) : marginal of B

max P(AB,C,D,E=e)

AB,CD

= Max max max max P(E=¢e|D)P(D|C)P(C|B)P(B|A)P(A)
= max P(E=e|D) max P(D|C) max P(C|B) max P(B|A)P(A)

M’(B) : ???

M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F(A*(B), B).

M(B) = max, F(A,B) : maxMarginal of B

M(B):mf\xx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F(A*(B), B).

B bl b2 b3
F(A,B bl b2 b3
(A.B) A*(B) a3
al 1 3 9
a2 2 > 8 B bl b2 b3
a3 4 7 6 M(B) 4

M(B) = max, F(A,B) : maxMarginal of B

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F(A*(B), B).

B bl b2 b3
F(A,B bl b2 b3
(A.8) A*(B) a3 a3
al 1 3 9
a2 2 > 8 B bl | b2 | b3
a3 4 7 6 M(B) 4 -

M(B) = max, F(A,B) : maxMarginal of B

M(B):mgx F(A B)

For every choice of B, we decide an A*(B)=argmax, F(A,B)
with M(B) = F(A*(B), B).

B bl b2 b3
F(A,B) | b1l b2 b3
A*(B) a3 a3 al
al 1 3 9
a2 2 > 8 B bl | b2 | b3
a3 4 7 6 M(B) A - 9

Most Probable Assignment on a Chain

F(A,B)

O~ o~ o—Ce>

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(A,B)

F(A,B)| al a2

a3

bl

b2

b3

Most Probable Assignment on a Chain

M(B)

O O~ o~

max P(AB,C,D,E=e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(B) = max, F(A,B)

B [A*(B)|M(B)| | F(AB) | al | a2

a3

bli| al bl

b2 | a3 .. b2

b3 | a2 .. b3

Most Probable Assignment on a Chain

F(B,C)
A DO~ e o~ O>—CED

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

P(C|B)| b1l b2 b3 B [A*(B)| M(B)
cl bl | al
c2 b2 | a3
c3 b3 | a2

Most Probable Assignment on a Chain

F(B,C)
Che o@D oD

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(B,C)=P(C|B)M(B)

F(B,C) | bl b2 b3
cl
c2
c3

Most Probable Assignment on a Chain

M(C)

Cha WGP @D P D

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(C) = max; F(B,C)

C [B*(C)|M(C)| |F(B,C)| bl | b2

b3

cl b3 e cl

c2 bl e c2

c3 b2 e c3

Most Probable Assignment on a Chain

F(C,D)

Co—CD

max P(A,B,C,D,E=¢e)

AB,CD

n

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

P(D|C)

cl

c2

c3

C

B*(C)

M(C)

dl

cl

b3

d2

c2

bl

d3

c3

b2

Most Probable Assignment on a Chain

F(C,D)

CPa Uy Do O &>

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(C,D) = P(D]|C)M(C)

F(CLD)| «cl1 c2 c3
dl
d2
d3

Most Probable Assignment on a Chain

M(D)
A~ O>—C e Oo— o o—~ED
max P(AB,C,D,E=e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M(D)=max. F(C,D)

D |c*(D)|M(D)| |F(C,D)| «c1 2 3

di| cl " dl

d2 | c2 s d2

d3 | c3 s d3

Most Probable Assignment on a Chain

F(D,E=e)
Chodbodde o dD

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

F(D)=P(E=e|D)M(D)

P(E=e|D dl d2 d3 D |C*(D)| M(D)
e di| cl
d2 | c2
d3 | c3

Most Probable Assignment on a Chain

M

A~ e D>~ o= o—ED

max P(A,B,C,D,E=¢e)

AB,CD

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)

M= max, F(D)
D* | M F(D,E=e) | d1 d2 d3
d2 | .. e

What weget? =» M =max,z, P(A,B,C,D,E=¢e)
What we want ? =» (A*,B*,C*,D*) = argmax,z, P(A,B,C,D,E=€)

= Max max max max P(E=e|D)P(D|C)P(C|B)P(B|A)P(A)

Most Probable Assignment on a Chain

max P(A,B,C,D,E=¢e)

AB,CD

Ceo—C oo~

M

>

= max P(E=¢e|D) max P(D|C) max P(C|B) max P(B| A)P(A)
What we want ? =» (A*,B*,C*,D*) = argmax,,, P(A,B,C,D,E=¢e)
(a1, b1, c2, d2)

C*(D)

M(D)

cl

c2

D* | M D
d2_| .. di
\dz

d3

c3

C [B*(C) | M(C) B |A*(B)| M(B)
cl| b3 /bl al

P c2 | b1-T .. b2 | a3
c3 | b2 b3 | a2

Most Probable Assighment on general Graph

It’s straight forward to generalize algorithm above
to case of general graph with similarity of “>” and “max”.

(The difference is there must be a “traceback” procedure to find the
“argmax” after we get “max”.)

Summary

To solve inference problems like “likelihood of X”, “P(Z| X)”,
“Most Probable Assignment”, we can use Variable Elimination
(e.g. Sum-Product) algorithm

)

In case of tree-structured factor graph, we just run “2 passes’
of VE from leaves to a root & the reverse.

In case of general-structured graph, we must find a “good”
elimination order inducing smallest “maximum clique”, which
is often done with greedy method.

When we know which variables will be given in advance, we
can derive much easier model M’ from original M with
evidence, which is more tractable in Inference & Learning.

