
Exact Inference  
on Graphical Model 

Reference: 
 
    Probabilistic Graphical Model  Ch.9 , Ch. 10 (Koller & Friedman) 
    CMU, 10-708, Fall 2009  Probabilistic Graphical Models Lectures 8,9,10 (Eric Xing) 
 



Probabilistic Inference 

• A Graphical Model specifies a joint distribution PM(X) over a 
collection of variables X. 

 

• How can we answer queries/questions about P(X) ?   

 That is, how can we inference using P(X) ? 

 

• Type of queries: 
 

– 1. Likelihood of evidence/assignments on variables 

– 2. Conditional Probability of some variables (given others). 

– 3.  Most Probable Assignment for some variables (given others ). 



Query 1: Likelihood 

• Given Evidence E = {X1=x1,…, XD=xD} specifying some variables’ 
value and let Z={Z1, …, Zk} be variables unspecified , the likelihood 
of a model M yielding this evidence can be computed by: 
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Naïve algorithm yield O( |Z|K ) complexity… 



Query 1: Likelihood 
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• This measure is often used as criteria for Model Selection. 

Ex.  In speech recognition,   
        Z: words (unspecified) , X: wave sample (specified evidence E) 

Z1 

x1 

Z2 

x2 

Z3 

x3 

A person’s “Language Model” P(Zt+1|Zt) 

A person’s  
“Pronunciation  

Model” 
P(Xt|Zt) 

How likely a person M=(Language, Pronunciation)  
produce this wave sample can be Computed by: 
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Summation over all possible words Z producing X 



Query 1: Likelihood 
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Taking special case E = empty , it can also be used to compute  
Normalizing Const. = Z in MRF as following : 
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Query 2: Conditional (marginal) Probability 

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables 
Z={Z1, …, Zk} unspecified , Conditional Probability of Z is given 
by: 
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• Sometimes we are interested in only some variables Y in Z, 
where Z = { Y ,W }, then conditional (marginal) prob. of Y is 
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Naïve summation over uninterested variables W 
yield O( |W|K ) complexity… 



Query 2: Conditional (marginal) Probability 
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Z1 

x1 

Z2 

x2 

Z3 

x3 

A person’s “Language Model” P(Zt+1|Zt) 

A person’s  
“Pronunciation  

Model” 
P(Xt|Zt) 

A word sequence Z1…ZK ‘s prob. given the wave sample X1…XK 

Ex.  In speech recognition,   
        Z: words (unspecified) , X: wave sample (specified evidence E) 
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The 1st word Z1’s marginal distribution 
given the wave sample X1…XK 

(naïve method is intractable for large K) 

If we only care the 1st word, then: 



Query 3: Most Probable Assignment 

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables 
Z={Z1, …, Zk} unspecified , Most Probable Assignment of Z is 
given by: 

 

)()|(  maxarg
P(X)

)()|(
  maxarg                 

)|(  maxarg  )|(

ZPZXP
ZPZXP

XZPXZMPA

ZZ

Z





• MPA is also called “maximum a posteriori configuration”  

 or “MAP inference”. 

1. Even if we have computed Query 2 = P(Z|X) , it’s intractable to 
enumerate all possible Z to get argmaxZ P(Z|X). 

Note:  

2. MPA cares “Joint Maximum”,  
 not “Marginal Maximum”. 
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Query 3: Most Probable Assignment 

Z1 

x1 

Z2 

x2 

Z3 

x3 

A person’s “Language Model” P(Zt+1|Zt) 

A person’s  
“Pronunciation  

Model” 
P(Xt|Zt) 

We often just want to “decode words ” from the wave sample,  
That is, we care Z* = argmaxZ P(Z|X) but not P(Z|X) itself. 
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Marginal Maximum: 

Joint Maximum (MPA) : 

(inconsistent decoding) 

(consistent decoding) 



In terms of difficulty,  
there are 3 types of inference problem. 

•  Inference which is easily solved with Bayes rule. 

 

 

• Inference which is tractable using some dynamic 
programming technique. 

 (e.g. Variable Elimination or J-tree algorithm ) 

 

 

•  Inference which is proved intractable  

 & should be solved using some Approximate Method. 

 (e.g. Approximation with Optimization or Sampling technique.) 

Today’s focus 



Agenda 

• Introduce the concept of “Variable Elimination” in special case of 
Tree-structured Factor Graph. 

 

• Extend the idea of “VE” to general Factor graph with concept of 
“Clique Tree”. 

 

• See how to extend “VE” to “Most Probable Assignment” (MAP 
configuration) Problem. 



Variable Elimination: Inference on a Chain 

How to get P(E=e) ? 
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We can put summation as right as possible… 



Variable Elimination: Inference on a Chain 

How to get P(E=e) ? 
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Variable Elimination: Inference on a Chain 
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F(A,B) 

A Table size=|A||B| 

F(A,B) 
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Variable Elimination: Inference on a Chain 
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∑AF(A,B)=M( B ) 

Eliminate “A”.   A Table size=|B|. 

M(B) 
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Variable Elimination: Inference on a Chain 
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P(C|B)*M( B ) = F(B,C) 

A Table size=|B||C|. 

F(B,C) 
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Variable Elimination: Inference on a Chain 
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∑B F(B,C)=M(C) 

M(C) 

Eliminate “B”.   A Table size=|C|. 
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Variable Elimination: Inference on a Chain 
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P(D|C)M(C) = F(C,D) 

F(C,D) 

A Table size=|C||D|. 
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Variable Elimination: Inference on a Chain 
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∑C F(C,D)= M(D) 

M(D) 

Eliminate “C”.   A Table size=|D|. 
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Variable Elimination: Inference on a Chain 
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P(E|D)M(D)=F(D,E) 

F(D,E) 

A Table size=|D||E|. 
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Variable Elimination: Inference on a Chain 
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∑D F(D,E)=M(E)=P(E) 

Eliminate D. Get the answer. 

Both Time & Space Complexity are O( |A||B|+|B||C|+|C||D|+|D||E| )   O( |Range|2 ) 
 
Naïve method complexity = O(|A||B||C||D||E|)    O(  |Range|N ) 
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Variable Elimination: Inference on a Chain 

A B C D E 

How about inference on Undirected Model (MRF) ? 
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The same idea applies !!  



Variable Elimination: Inference on a Chain 

From now on, we won’t distinguish between BN & MRF.  
The same algorithm applies to them in a “Factor View”. 
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f(A,B) f(B,C) f(C,D) f(D,E) 

1* 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

F(A,B) 

f(A,B)=F(A,B) 

The elimination process is sometimes called “Sum-Product algorithm”. 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

∑AF(A,B)=M( B ) 

M(B) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Sum ! 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

F(B,C) 

M( B )*f(B,C)= F(B,C) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Product ! 



Variable Elimination: Inference on a Chain 

M(C) 
A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

∑BF(B,C)=M(C) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Sum ! 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

F(C,D) 

M( C )*f(C,D) = F(C,D) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Product ! 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

∑CF(C,D)=M(D) 

M(D) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Sum ! 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

F(D,E) 

M( D )*f(D,E) = F(D,E) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Product ! 



Variable Elimination: Inference on a Chain 

A B C D E 

f(A,B) f(B,C) f(C,D) f(D,E) 

∑DF(D,E)=M(E)=P(E) 

M(E) 

The elimination process is sometimes called “Sum-Product algorithm”. 

Sum ! 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

F(F,G,H)=f(F,G,H) 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(F) = ∑G,H f(F,G,H) Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

F(B,F)=f(B,F)M(F) 

Product ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(B)=∑F F(B,F) 
Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(B) 

F(A,B)=f(A,B) 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(B) 

M’(B)=∑AF(A,B) 

Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

F(B,C)=M(B)M’(B)f(B,C) 

Product ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(C)=∑BF(B,C) 

Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(C) 

F(C,D)=f(C,D) 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(C) 

M’(C)=∑DF(C,D) 
Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

F(C,E)=f(C,E)M(C)M’(C) 

Product ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

If the factor graph is a tree without cycle,  
then VE can be applied in a similar way. 

M(E)=∑CF(C,E)=P(E) 

Sum ! 

Elimination Order: 
  Let E be the root ; 
  Eliminate from leaves to root. 



Variable Elimination: Inference on a Tree 

A B C D 

E 

F 

G H 

Follow the Elimination Process, we can build a “Clique Tree”. In which: 
 
1. Every node is a F(.) before elimination. 
2. Every edge is a “message” M(.) passed from F(.) to F(.). 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

M’(B) 

M(B) 

M(F) 

M’(C) M(C) 

∑CF(C,E)=P(E) 

F(F,G,H) 



Variable Elimination: Inference on a Tree 

Why is Clique Tree useful ? 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

M’(B) 

M(B) 

M(F) 

M’(C) M(C) 

∑CF(C,E)=P(E) 

F(F,G,H) 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

M’(B) 

M(B) 

M(F) 

M’(C) M(C) 

∑CF(C,D)=P(D) 

F(F,G,H) 

If we want to know P(D): 
Only this part different !! 



Variable Elimination: Inference on a Tree 

Why is Clique Tree useful ? 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

M’(B) 

M(B) 

M(F) 

M’(C) M(C) 

∑FF(B,F)=P(B) 

F(F,G,H) 

If we want to know P(B): 

F(.) 

M(.) 

M(.) 

The queried node should get  
messages from all nodes on  
the tree to get the marginal  
distribution. 



Variable Elimination: Inference on a Tree 

Why is Clique Tree useful ? 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

F(F,G,H) 

To get marginal distribution of N nodes, we don’t need run VE “N times”, 
“2 times” are enough to get all possible messages. 

1st pass:  
Take a node as root.  
Run Sum-Product from leaves to root. 

2nd pass:   
Run Sum-Product from root to leaves. 

F(B,C) 

All marginal dist. can be derived from 
 
1. Multiply all M(.) from neighbors  

by f(.) on this node. 
2. Eliminate unwanted variables. )(),()(),( FMFBfBMFBP 

f(B,F) 

M(F) 



Variable Elimination: Inference on a Tree 

Why is Clique Tree useful ? 

To get marginal distribution of N nodes, we don’t need run VE “N times”, 
“2 times” are enough to get all possible messages. 

Complexity : 

Elimination on a node F(A,B,C)  
takes O(|A||B||C|) space & time. 
 
So the algorithm’s bottleneck is on 
elimination for the “Largest Node”  
on clique tree. 

bottleneck: 
O(|F||G||H| ) 
time & space. 

F(B,F) 

F(A,B) F(B,C) F(C,D) 

F(C,E) 

F(F,G,H) 

F(B,C) 



Agenda 

• Introduce the concept of “Variable Elimination” in special case of 
Tree-structured Factor Graph. 

 

• Extend the idea of “VE” to General Factor Graph with concept of 
“Clique Tree”. 

 

• See how to extend “VE” to “Most Probable Assignment” (MAP 
configuration) Problem. 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 

A 

B 

C 

D E 

F 

Elimination Order 1:   B C D E A  

AB 

AC 

AD AE 

AF 

M1(A) 
M2(A) 

M3(A) 
M4(A) 

Maximum Node Size=2 
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Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 

A 

B 

C 

D E 

F 

Elimination Order 2:   A B C D E  

ABCDEF 


E D C B A

BAfCAfDAfEAfFAf
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M(B,C,D,E,F) 

M(B,C,D,E,F) 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 
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C 

D E 

F 

Elimination Order 2:   A B C D E  

ABCDEF 

BCDEF 

M(B,C,D,E,F) 
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M(C,D,E,F) 

M(C,D,E,F) 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 
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D E 

F 

Elimination Order 2:   A B C D E  

ABCDEF 

BCDEF 


E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F) CDEF 

M(C,D,E,F) 

M(D,E,F) 

M(D,E,F) 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 
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Elimination Order 2:   A B C D E  
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M(B,C,D,E,F) CDEF 

M(C,D,E,F) 

M(D,E,F) 
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M(E,F) 

M(E,F) 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 

E 

F 

Elimination Order 2:   A B C D E  

ABCDEF 

BCDEF 


E D C B A
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M(B,C,D,E,F) CDEF 

M(C,D,E,F) 

M(D,E,F) 

DEF 
M(E,F) 

EF 

M(F) 

M(F) 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 

F 

Elimination Order 2:   A B C D E  

ABCDEF 

BCDEF 


E D C B A
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Z
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M(B,C,D,E,F) CDEF 

M(C,D,E,F) 

M(D,E,F) 

DEF 
M(E,F) 

EF 

M(F) 

F 

Maximum Node Size=6 



Variable Elimination:  Inference on General Graph 

Some problem ignored earlier:  
     Different “Elimination Orders” have different effect. 

AB 

AC 

AD AE 

AF 

M1(A) 

M2(A) 

M3(A) 
M4(A) 

Elimination Order 1:   B C D E A 

A 

B 

C 

D E 

F 

In “Tree” structure factor graph, the optimal “Elimination Order”  
is just “Elimination from leaves”. 

If factor graph is not Tree, what’s the best elimination order ??? 



Variable Elimination:  Inference on General Graph 

When factor graph is not Tree, we want a Elimination Order “introducing 
as fewer edges as possible” (then we will have factor size smaller). 

B C 

D 

E 

A 

Eliminate “C”  fill 1 edge 
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Produce a factor of size 3 

B C 
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E 
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Eliminate “A”  fill 2 edges 
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Produce a factor of size 4 

This is better !! 
f(C,D) 

f(C,E) 

f(A,C) 

M(A,D,E) 

M(B,C,D,E) 



Variable Elimination:  Inference on General Graph 

Unfortunately, Finding Elimination order with 
“smallest maximum factor” is NP-hard. 

It’s fortunate that greedy algorithm works quite well in practical, 
in which, we just search for the “least-cost” variable to eliminate: 
 
1. If variables have same cardinality  

  cost = (# of edges introduced by elimination). 
 
2. If variables have different cardinality 

  cost = (# of edges)*(weight by cardinality of node involved) 

 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Language Model of “words sequence” 

Pronunciation 

Decoding 2 person’s speech  
from waves: 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 Language Model of 1st person 

Language Model of 2nd person 

Superposition of “2 waves” 

Speech Recognition: 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

C 

A B 
factor  graph 

C 

A B 

C 

A B 

P(C|A,B) 
moralize 

Review: 

Moralize 
Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

Because a factor is a “clique” in undirected representation, 
we transform Factorial HMM into “undirected” before running VE. 

Not a Tree. 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 


1
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Y

XYfYYfZYfXYZM

f(Y1,Z1) 

f(Y1,X1) 

f(Z1,X1) 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y2 Y3 

Intro. 2 edges !! 


1
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Y

XYfYYfZYfXYZM

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Z1,Y2,X2) 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 


1
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Z

XZfZZfZYfXZYM

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

f(Y1,Z1) 

f(Y1,X1) 

f(Z1,X1) 



Example:  Factorial HMM 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

Intro. 2 edges !! 


1
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Z

XZfZZfZYfXZYM

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z2,X1) 



Example:  Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 


1
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X

XZfXYfZYM

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

f(Y1,X1) 

f(Z1,X1) 



Example:  Factorial HMM 

Z1 Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

Intro. no edges !!       Let’s eliminate !! 


1
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X

XZfXYfZYM

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) 



Example:  Factorial HMM 

Z1 Z2 Z3 

Y1 Y2 Y3 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 


2
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Z
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M(Y2,Z2) M(Y3,Z3) M(Y1,Z1) 

f(Z1,Z2) f(Z2,Z3) 



Example:  Factorial HMM 

Z1 Z3 

Y1 Y2 Y3 

Intro.  3  edges !! 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 


2
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Z

ZZfZZfZYMZYZM

M(Z1,Y2,Z3) 



Example:  Factorial HMM 

Z1 Z2 Z3 

Y1 Y2 Y3 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 


1

),(),(),( 211121

Z

ZZfZYMZYM

M(Y2,Z2) M(Y3,Z3) M(Y1,Z1) 

f(Z1,Z2) 



Example:  Factorial HMM 

Z2 Z3 

Y1 Y2 Y3 

Intro.  1  edge !! 
(the best) 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Y1 

Z1Z2 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 

M(Y1,Z2) 


1

),(),(),( 211121

Z

ZZfZYMZYM

M(Y1,Z2) 
M(Y2,Z2) M(Y3,Z3) 



Example:  Factorial HMM 

Z2 Z3 

Y1 Y2 Y3 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Y1 

Z1Z2 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 

M(Y1,Z2) 

M(Y2,Z2) M(Y3,Z3) 
M(Y1,Z2) 


1
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f(Y1,Y2) 



Example:  Factorial HMM 

Z2 Z3 

Y2 Y3 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

M(Y1,Z2) 

Intro.  0  edge !! 
(the best) 

Y1Y2 

Z2 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 

M’(Y2,Z2) M(Y2,Z2) M(Y3,Z3) 


1

),(),(),(' 212122

Y

YYfZYMZYM



Example:  Factorial HMM 

Z2 Z3 

Y2 Y3 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

M(Y1,Z2) 

Y1Y2 

Z2 

Y2 

Z2Z3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 

M(Y2,Z3) 

M’(Y2,Z2) M(Y2,Z2) M(Y3,Z3) 
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f(Z2,Z3) 



Example:  Factorial HMM 

Z3 

Y2 Y3 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

M(Y1,Z2) 

Y1Y2 

Z2 

Y2 

Z2Z3 

M(Y2,Z3) 

Y2Y3 

Z3 

Finding Elimination Order: 
Find elimination adding as fewer edges as possible. (greedily) 

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3) 

M(Y3,Z3) 
M(Y2,Z3) 


2
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Z

ZZfZYMZYMZYM

f(Y2,Y3) 



Example:  Factorial HMM 

After building a clique tree, we can run “2 passes” on the tree 
to get all messages M(.) needed for computing marginal. 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Y1Y2 

Z2 

Y2 

Z2Z3 

Y2Y3 

Z3 

1st pass:  
Take a node as root.  
Run Sum-Product from leaves to root. 

2nd pass:   
Run Sum-Product from root to leaves. 

All marginal dist. can be derived 
from 
 
1. Multiply all M(.) from neighbors 

by f(.) on this node. 
2. Eliminate unwanted variable. 

Y3 

Z3 

X3 



Example:  Factorial HMM 

After building a clique tree, we can run “2 passes” on the tree 
to get all messages M(.) needed for computing marginal. 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Y1Y2 

Z2 

Y2 

Z2Z3 

Y2Y3 

Z3 

Y3 

Z3 

X3 

Assume we want : P(Y1,Y2) 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 Y1, Y2 are 
 dependent. 

There must be a node in 
     clique tree containing (Y1,Y2). 

),(),,(),(),,(

dist.) maginal(or  belief

2222121221 ZYMZYYfZYMZYYb 

M(Y1,Z2) 


2
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Z

ZYYbYYP



Example : General Factorial HMM 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

Moralize 
Z1 

x1 

Z2 

x2 

Z3 

x3 

Y1 Y2 Y3 

W1 W2 W3 

V1 V2 V3 

A clique size=5,   
intractable most of times. 
(No tractable elimination exist…) 



Some Model are Intractable for Exact Inference 

Example: A Grid MRF 



Example: A Grid MRF 

Some Model are Intractable for Exact Inference 



Example: A Grid MRF 

Some Model are Intractable for Exact Inference 



Example: A Grid MRF 

Some Model are Intractable for Exact Inference 



Example: A Grid MRF 

Generally, we will have clique of “size N”  
for a N*N grid, which is indeed intractable. 

We will introduce 
Approximate Inference 
for this kind of problem 

later. 

Some Model are Intractable for Exact Inference 



Variable Elimination:  Dealing with Evidence 

A B C D 

E 

F 

G H 

What if some variables X={X1…XD} are given in Evidence : 

Given Evidence { B=b } : 

B=b 

f(A,B=b) f(B=b,C) 

f(B=b,F) 



Variable Elimination:  Dealing with Evidence 

A C D 

E 

F 

G H 

What if some variables X={X1…XD} are given in Evidence : 

Given Evidence { B=b } : 

f(A) f(C) 

f(F) 

A model with evidence 
equivalent to another model 
without evidence. 

To infer PM(Z|X), we transform  
M to another model M’ 
and infer PM’(Z). 



Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 
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But given X1~X3, we actually run inference on another model M’. 



Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 
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But given X1~X3, we actually run inference on another model M’. 



Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 

),('),('
1

),( 3221 ZZfZZf
Z

ZxXP xx

But given X1~X3, we actually run inference on another model M’. 

Z1 

x1 

Z2 

x2 

Z3 

x3 



Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 

But given X1~X3, we actually run inference on another model M’. 
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Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 

But given X1~X3, we actually run inference on another model M’. 
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Z1 

x1 

Z2 

x2 

Z3 

x3 

M’ is much more tractable. 
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Variable Elimination:  Dealing with Evidence 

If we can know “which variables will be given”, then a intractable 
model will become a tractable one. 

Sometimes we want capture more dependency in a model,  
which induce intractable inference. 

But given X1~X3, we actually run inference on another model M’. 

Z1 Z2 Z3 

New normalize const. can be computed Using VE. 

M’ is much more tractable. 
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1
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xx
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Variable Elimination:  Dealing with Evidence 

Z1 

x1 

Z2 

x2 

Z3 

x3 

Z1 

x1 

Z2 

x2 

Z3 

x3 
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Even if P(Z|X) can be inferred efficiently,  “learning P(X,Z)” is intractable. 
One solution is model P(Z|X) directly , yielding “CRF” model. 

Intractable MRF model 

Tractable CRF Model 



Agenda 

• Introduce the concept of “Variable Elimination” in special case of 
Tree-structured Factor Graph. 

 

• Extend the idea of “VE” to General Factor Graph with concept of 
“Clique Tree”. 

 

• See how to extend “VE” to “Most Probable Assignment” (MAP 
configuration) Problem. 



Query 3: Most Probable Assignment 

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables 
Z={Z1, …, Zk} unspecified , Most Probable Assignment of Z is 
given by: 

 

)()|(  maxarg
P(X)

)()|(
  maxarg                 

)|(  maxarg  )|(

ZPZXP
ZPZXP

XZPXZMPA

ZZ

Z















)|( maxarg

......

)|( maxarg

     X)|P(Z argmax

11

Z

XZP

XZP

KZK

Z



What’s the different ? 

)|...(   max...max      )|(  max 1
1

XZZPXZP K
ZZZ K



MPA Goal:  

   ),...(  ...      )(
1 KZ

1 
Z

K XZZPXP

Likelihood Goal::  

(Solved using VE) 

Exploring the similarity between  “max”  &  “∑”  is the key 
to solve MPA using VE. 



What’s the different ? 

)()|()|()|()|()( APABPBCPCDPDeEPeEP
D C B A

 

   
D C B A

APABPBCPCDPDEP )()|()|()|()|(

Review: 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



M(B) : marginal of B 

M’(B) :  ??? 



M(B) = maxA F(A,B)  :  maxMarginal of B 

),(max)( BAFBM
A



For every choice of B, we decide an A*(B)=argmaxA F(A,B) 
with M(B) = F( A*(B), B ). 

F(A,B) b1 b2 b3 

a1 1 3 9 

a2 2 5 8 

a3 4 7 6 



M(B) = maxA F(A,B)  :  maxMarginal of B 

),(max)( BAFBM
A



For every choice of B, we decide an A*(B)=argmaxA F(A,B) 
with M(B) = F( A*(B), B ). 

F(A,B) b1 b2 b3 

a1 1 3 9 

a2 2 5 8 

a3 4 7 6 

B b1 b2 b3 

A*(B) a3 

B b1 b2 b3 

M(B) 4 



M(B) = maxA F(A,B)  :  maxMarginal of B 

B b1 b2 b3 

A*(B) a3 a3 

B b1 b2 b3 

M(B) 4 7 

),(max)( BAFBM
A



For every choice of B, we decide an A*(B)=argmaxA F(A,B) 
with M(B) = F( A*(B), B ). 

F(A,B) b1 b2 b3 

a1 1 3 9 

a2 2 5 8 

a3 4 7 6 



M(B) = maxA F(A,B)  :  maxMarginal of B 

B b1 b2 b3 

A*(B) a3 a3 a1 

B b1 b2 b3 

M(B) 4 7 9 

),(max)( BAFBM
A



For every choice of B, we decide an A*(B)=argmaxA F(A,B) 
with M(B) = F( A*(B), B ). 

F(A,B) b1 b2 b3 

a1 1 3 9 

a2 2 5 8 

a3 4 7 6 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax
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DC,B,A,
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eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



F(A,B) 

F(A,B) 

F(A,B) a1 a2 a3 

b1 … … … 

b2 … … … 

b3 … … … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



M(B) 

M(B) = maxA F(A,B) 

B A*(B) M(B) 

b1 a1 … 

b2 a3 … 

b3 a2 … 

F(A,B) a1 a2 a3 

b1 … … … 

b2 … … … 

b3 … … … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



F(B,C) 

F(B,C)=P(C|B)M(B) 

B A*(B) M(B) 

b1 a1 … 

b2 a3 … 

b3 a2 … 

P(C|B) b1 b2 b3 

c1 … … … 

c2 … … … 

c3 … … … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
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F(B,C)=P(C|B)M(B) 

F(B,C) b1 b2 b3 

c1 … … … 

c2 … … … 

c3 … … … 

F(B,C) 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



M(C) 

M(C) = maxB  F(B,C) 

F(B,C) b1 b2 b3 

c1 … … … 

c2 … … … 

c3 … … … 

C B*(C) M(C) 

c1 b3 … 

c2 b1 … 

c3 b2 … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



F(C,D) 

F(C,D) = P(D|C)M(C) 

C B*(C) M(C) 

c1 b3 … 

c2 b1 … 

c3 b2 … 

P(D|C) c1 c2 c3 

d1 … … … 

d2 … … … 

d3 … … … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



F(C,D) = P(D|C)M(C) 

F(C,D) c1 c2 c3 

d1 … … … 

d2 … … … 

d3 … … … 

F(C,D) 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
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M(D)=maxC  F(C,D) 

F(C,D) c1 c2 c3 

d1 … … … 

d2 … … … 

d3 … … … 

M(D) 

D C*(D) M(D) 

d1 c1 … 

d2 c2 … 

d3 c3 … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



F(D)=P(E=e|D)M(D) 

F(D,E=e) 

D C*(D) M(D) 

d1 c1 … 

d2 c2 … 

d3 c3 … 

P(E=e|D) d1 d2 d3 

e … … … 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



M= maxD F(D) 

M 

F(D,E=e) d1 d2 d3 

e … … … 

D* M 

d2 … 

What we get ?        M = maxABCD  P(A,B,C,D,E=e) 

What we want ?    (A*,B*,C*,D*) = argmaxABCD  P(A,B,C,D,E=e) 



Most Probable Assignment on a Chain 

)()|()|()|()|(maxmaxmaxmax

),,,,( max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD




)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD



What we want ?    (A*,B*,C*,D*) = argmaxABCD  P(A,B,C,D,E=e) 

B A*(B) M(B) 

b1 a1 … 

b2 a3 … 

b3 a2 … 

C B*(C) M(C) 

c1 b3 … 

c2 b1 … 

c3 b2 … 

D C*(D) M(D) 

d1 c1 … 

d2 c2 … 

d3 c3 … 

D* M 

d2 … 

(a1 , b1, c2, d2) 

M 



Most Probable Assignment on general Graph 

Y1 

Z1Z2 

Y1 

Z1 

X1 

Y2 

Z2 

X2 

Y3 

Z3 

X3 

Y1Y2 

Z2 

Y2 
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It’s straight forward to generalize algorithm above  
to case of general graph with similarity of “∑” and “max”. 
 
(The difference is there must be a “traceback” procedure to find the 
 “argmax” after we get “max”.) 



Summary 

•  To solve inference problems like “likelihood of X”, “P(Z|X)”, 
“Most Probable Assignment”, we can use Variable Elimination 
(e.g. Sum-Product) algorithm 

 

•  In case of tree-structured factor graph, we just run “2 passes” 
of VE from leaves to a root & the reverse. 

 

•  In case of general-structured graph, we must find a “good” 
elimination order inducing smallest “maximum clique”, which 
is often done with greedy method. 

 

• When we know which variables will be given in advance, we 
can derive much easier model M’ from original M with 
evidence, which is more tractable in Inference & Learning. 


