
Exact Inference
on Graphical Model

Reference:

 Probabilistic Graphical Model Ch.9 , Ch. 10 (Koller & Friedman)
 CMU, 10-708, Fall 2009 Probabilistic Graphical Models Lectures 8,9,10 (Eric Xing)

Probabilistic Inference

• A Graphical Model specifies a joint distribution PM(X) over a
collection of variables X.

• How can we answer queries/questions about P(X) ?

 That is, how can we inference using P(X) ?

• Type of queries:

– 1. Likelihood of evidence/assignments on variables

– 2. Conditional Probability of some variables (given others).

– 3. Most Probable Assignment for some variables (given others).

Query 1: Likelihood

• Given Evidence E = {X1=x1,…, XD=xD} specifying some variables’
value and let Z={Z1, …, Zk} be variables unspecified , the likelihood
of a model M yielding this evidence can be computed by:

1

),...,,,...,(...)(

11

Z Z

DKMM

K

xxZZPXP

Eoflikelihood

Naïve algorithm yield O(|Z|K) complexity…

Query 1: Likelihood

1

),...,,,...,(... 11

Z Z

DKM

K

xxZZPEoflikelihood

• This measure is often used as criteria for Model Selection.

Ex. In speech recognition,
 Z: words (unspecified) , X: wave sample (specified evidence E)

Z1

x1

Z2

x2

Z3

x3

A person’s “Language Model” P(Zt+1|Zt)

A person’s
“Pronunciation

Model”
P(Xt|Zt)

How likely a person M=(Language, Pronunciation)
produce this wave sample can be Computed by:

1 2 3

),,,,,(

)(

E produce

321321

Z Z Z

M

M

xxxZZZP

XP

Moflikelihood

Summation over all possible words Z producing X

Query 1: Likelihood

1

),...,,,...,(...)(

11

Z Z

DKMM

K

xxZZPXP

Eoflikelihood

Taking special case E = empty , it can also be used to compute
Normalizing Const. = Z in MRF as following :

1),...,(
~

...
1

),...,(...
11

11

Z Z

K

Z Z

K

KK

ZZPZZP

1

),...,(
~

... 1

Z Z

K

K

ZZPZ

))...(
~

Z

1
)...(P , .)()...(

~
 (11

 C

1 KK

Minclique

K ZZPZZdistedunnormalizbeCZZPlet

Query 2: Conditional (marginal) Probability

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables
Z={Z1, …, Zk} unspecified , Conditional Probability of Z is given
by:

1Query by is)(,
)(

),(
)|(givenXPwhere

XP

XZP
XZP

• Sometimes we are interested in only some variables Y in Z,
where Z = { Y ,W }, then conditional (marginal) prob. of Y is

)|...,(...)|()|(1

1

KW

K

WW

XWWYPXZPXYP

Naïve summation over uninterested variables W
yield O(|W|K) complexity…

Query 2: Conditional (marginal) Probability

1Query by is)(,
)(

),(
)|(givenXPwhere

XP

XZP
XZP

Z1

x1

Z2

x2

Z3

x3

A person’s “Language Model” P(Zt+1|Zt)

A person’s
“Pronunciation

Model”
P(Xt|Zt)

A word sequence Z1…ZK ‘s prob. given the wave sample X1…XK

Ex. In speech recognition,
 Z: words (unspecified) , X: wave sample (specified evidence E)

)|,,()|(
2 3

3211
Z Z

XZZZPXZP

The 1st word Z1’s marginal distribution
given the wave sample X1…XK

(naïve method is intractable for large K)

If we only care the 1st word, then:

Query 3: Most Probable Assignment

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables
Z={Z1, …, Zk} unspecified , Most Probable Assignment of Z is
given by:

)()|(maxarg
P(X)

)()|(
 maxarg

)|(maxarg)|(

ZPZXP
ZPZXP

XZPXZMPA

ZZ

Z

• MPA is also called “maximum a posteriori configuration”

 or “MAP inference”.

1. Even if we have computed Query 2 = P(Z|X) , it’s intractable to
enumerate all possible Z to get argmaxZ P(Z|X).

Note:

2. MPA cares “Joint Maximum”,
 not “Marginal Maximum”.

)|(maxarg

......

)|(maxarg

 X)|P(Z argmax

11

Z

XZP

XZP

KZK

Z

Query 3: Most Probable Assignment

Z1

x1

Z2

x2

Z3

x3

A person’s “Language Model” P(Zt+1|Zt)

A person’s
“Pronunciation

Model”
P(Xt|Zt)

We often just want to “decode words ” from the wave sample,
That is, we care Z* = argmaxZ P(Z|X) but not P(Z|X) itself.

'' ,'' ,'' givemay

)|(maxarg

)|(maxarg

)|(maxarg

321

33

22

11

frontZcomesZIZ

XZP

XZP

XZP

Z

Z

Z

'' '' '' ay

)|,,(maxarg 321
,, 321

fromcomeIgivem

XZZZP
ZZZ

Marginal Maximum:

Joint Maximum (MPA) :

(inconsistent decoding)

(consistent decoding)

In terms of difficulty,
there are 3 types of inference problem.

• Inference which is easily solved with Bayes rule.

• Inference which is tractable using some dynamic
programming technique.

 (e.g. Variable Elimination or J-tree algorithm)

• Inference which is proved intractable

 & should be solved using some Approximate Method.

 (e.g. Approximation with Optimization or Sampling technique.)

Today’s focus

Agenda

• Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

• Extend the idea of “VE” to general Factor graph with concept of
“Clique Tree”.

• See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Variable Elimination: Inference on a Chain

How to get P(E=e) ?

A B C D

eEDCBAPeEP),,,,()(

By structure of the BN:

)()|()|()|()|(),,,,(APABPBCPCDPDEPEDCBAP

D C B A

APABPBCPCDPDEPEP)()|()|()|()|()(

We can put summation as right as possible…

Variable Elimination: Inference on a Chain

How to get P(E=e) ?

A B C D

eEDCBAPeEP),,,,()(

By structure of the BN:

)()|()|()|()|(),,,,(APABPBCPCDPDEPEDCBAP

D C B A

APABPBCPCDPDEPEP)()|()|()|()|()(

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

F(A,B)

A Table size=|A||B|

F(A,B)

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

∑AF(A,B)=M(B)

Eliminate “A”. A Table size=|B|.

M(B)

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

P(C|B)*M(B) = F(B,C)

A Table size=|B||C|.

F(B,C)

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

∑B F(B,C)=M(C)

M(C)

Eliminate “B”. A Table size=|C|.

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

P(D|C)M(C) = F(C,D)

F(C,D)

A Table size=|C||D|.

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

∑C F(C,D)= M(D)

M(D)

Eliminate “C”. A Table size=|D|.

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

P(E|D)M(D)=F(D,E)

F(D,E)

A Table size=|D||E|.

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Variable Elimination: Inference on a Chain

A B C D

DeEPCDPBCPABPAPeEP)|()|()|()|()()(

∑D F(D,E)=M(E)=P(E)

Eliminate D. Get the answer.

Both Time & Space Complexity are O(|A||B|+|B||C|+|C||D|+|D||E|) O(|Range|2)

Naïve method complexity = O(|A||B||C||D||E|) O(|Range|N)

D C B A

APABPBCPCDPDEP)()|()|()|()|(

M(E)

Variable Elimination: Inference on a Chain

A B C D E

How about inference on Undirected Model (MRF) ?

),(),(),(),(
1

),,,,(ABBCCDDE
Z

EDCBAP

D C B A

ABBCCDDE
Z

EP),(),(),(),(
1

)(

D C B A

ABBCCDDE
Z

),(),(),(),(
1

The same idea applies !!

Variable Elimination: Inference on a Chain

From now on, we won’t distinguish between BN & MRF.
The same algorithm applies to them in a “Factor View”.

),(),(),(),(
1

),,,,(ABBCCDDE
Z

EDCBAP

)()|()|()|()|(),,,,(APABPBCPCDPDEPEDCBAP

),(),(),(),(
1

ABfBCfCDfDEf
Z

All viewed as:

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

1*

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

F(A,B)

f(A,B)=F(A,B)

The elimination process is sometimes called “Sum-Product algorithm”.

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

∑AF(A,B)=M(B)

M(B)

The elimination process is sometimes called “Sum-Product algorithm”.

Sum !

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

F(B,C)

M(B)*f(B,C)= F(B,C)

The elimination process is sometimes called “Sum-Product algorithm”.

Product !

Variable Elimination: Inference on a Chain

M(C)
A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

∑BF(B,C)=M(C)

The elimination process is sometimes called “Sum-Product algorithm”.

Sum !

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

F(C,D)

M(C)*f(C,D) = F(C,D)

The elimination process is sometimes called “Sum-Product algorithm”.

Product !

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

∑CF(C,D)=M(D)

M(D)

The elimination process is sometimes called “Sum-Product algorithm”.

Sum !

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

F(D,E)

M(D)*f(D,E) = F(D,E)

The elimination process is sometimes called “Sum-Product algorithm”.

Product !

Variable Elimination: Inference on a Chain

A B C D E

f(A,B) f(B,C) f(C,D) f(D,E)

∑DF(D,E)=M(E)=P(E)

M(E)

The elimination process is sometimes called “Sum-Product algorithm”.

Sum !

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(F,G,H)=f(F,G,H)

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(F) = ∑G,H f(F,G,H) Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(B,F)=f(B,F)M(F)

Product !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(B)=∑F F(B,F)
Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(B)

F(A,B)=f(A,B)

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(B)

M’(B)=∑AF(A,B)

Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(B,C)=M(B)M’(B)f(B,C)

Product !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(C)=∑BF(B,C)

Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(C)

F(C,D)=f(C,D)

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(C)

M’(C)=∑DF(C,D)
Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

F(C,E)=f(C,E)M(C)M’(C)

Product !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

If the factor graph is a tree without cycle,
then VE can be applied in a similar way.

M(E)=∑CF(C,E)=P(E)

Sum !

Elimination Order:
 Let E be the root ;
 Eliminate from leaves to root.

Variable Elimination: Inference on a Tree

A B C D

E

F

G H

Follow the Elimination Process, we can build a “Clique Tree”. In which:

1. Every node is a F(.) before elimination.
2. Every edge is a “message” M(.) passed from F(.) to F(.).

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

M’(B)

M(B)

M(F)

M’(C) M(C)

∑CF(C,E)=P(E)

F(F,G,H)

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

M’(B)

M(B)

M(F)

M’(C) M(C)

∑CF(C,E)=P(E)

F(F,G,H)

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

M’(B)

M(B)

M(F)

M’(C) M(C)

∑CF(C,D)=P(D)

F(F,G,H)

If we want to know P(D):
Only this part different !!

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

M’(B)

M(B)

M(F)

M’(C) M(C)

∑FF(B,F)=P(B)

F(F,G,H)

If we want to know P(B):

F(.)

M(.)

M(.)

The queried node should get
messages from all nodes on
the tree to get the marginal
distribution.

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

F(F,G,H)

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

1st pass:
Take a node as root.
Run Sum-Product from leaves to root.

2nd pass:
Run Sum-Product from root to leaves.

F(B,C)

All marginal dist. can be derived from

1. Multiply all M(.) from neighbors

by f(.) on this node.
2. Eliminate unwanted variables.)(),()(),(FMFBfBMFBP

f(B,F)

M(F)

Variable Elimination: Inference on a Tree

Why is Clique Tree useful ?

To get marginal distribution of N nodes, we don’t need run VE “N times”,
“2 times” are enough to get all possible messages.

Complexity :

Elimination on a node F(A,B,C)
takes O(|A||B||C|) space & time.

So the algorithm’s bottleneck is on
elimination for the “Largest Node”
on clique tree.

bottleneck:
O(|F||G||H|)
time & space.

F(B,F)

F(A,B) F(B,C) F(C,D)

F(C,E)

F(F,G,H)

F(B,C)

Agenda

• Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

• Extend the idea of “VE” to General Factor Graph with concept of
“Clique Tree”.

• See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

A

B

C

D E

F

Elimination Order 1: B C D E A

AB

AC

AD AE

AF

M1(A)
M2(A)

M3(A)
M4(A)

Maximum Node Size=2

A E D C B

A E D C B

BAfCAfDAfEAfFAf
Z

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

),(),(),(),(),(
1

)(

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

A

B

C

D E

F

Elimination Order 2: A B C D E

ABCDEF

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F)

M(B,C,D,E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

B

C

D E

F

Elimination Order 2: A B C D E

ABCDEF

BCDEF

M(B,C,D,E,F)

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(C,D,E,F)

M(C,D,E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

C

D E

F

Elimination Order 2: A B C D E

ABCDEF

BCDEF

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F) CDEF

M(C,D,E,F)

M(D,E,F)

M(D,E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

D E

F

Elimination Order 2: A B C D E

ABCDEF

BCDEF

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F) CDEF

M(C,D,E,F)

M(D,E,F)

DEF
M(E,F)

M(E,F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

E

F

Elimination Order 2: A B C D E

ABCDEF

BCDEF

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F) CDEF

M(C,D,E,F)

M(D,E,F)

DEF
M(E,F)

EF

M(F)

M(F)

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

F

Elimination Order 2: A B C D E

ABCDEF

BCDEF

E D C B A

BAfCAfDAfEAfFAf
Z

FP

),(),(),(),(),(
1

)(

M(B,C,D,E,F) CDEF

M(C,D,E,F)

M(D,E,F)

DEF
M(E,F)

EF

M(F)

F

Maximum Node Size=6

Variable Elimination: Inference on General Graph

Some problem ignored earlier:
 Different “Elimination Orders” have different effect.

AB

AC

AD AE

AF

M1(A)

M2(A)

M3(A)
M4(A)

Elimination Order 1: B C D E A

A

B

C

D E

F

In “Tree” structure factor graph, the optimal “Elimination Order”
is just “Elimination from leaves”.

If factor graph is not Tree, what’s the best elimination order ???

Variable Elimination: Inference on General Graph

When factor graph is not Tree, we want a Elimination Order “introducing
as fewer edges as possible” (then we will have factor size smaller).

B C

D

E

A

Eliminate “C” fill 1 edge

C

ECfDCfCAfEDAM),(),(),(),,(

Produce a factor of size 3

B C

D

E

A

Eliminate “A” fill 2 edges

A

EAfDAfCAfBAf

EDCBM

),(),(),(),(

),,,(

Produce a factor of size 4

This is better !!
f(C,D)

f(C,E)

f(A,C)

M(A,D,E)

M(B,C,D,E)

Variable Elimination: Inference on General Graph

Unfortunately, Finding Elimination order with
“smallest maximum factor” is NP-hard.

It’s fortunate that greedy algorithm works quite well in practical,
in which, we just search for the “least-cost” variable to eliminate:

1. If variables have same cardinality

 cost = (# of edges introduced by elimination).

2. If variables have different cardinality

 cost = (# of edges)*(weight by cardinality of node involved)

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Language Model of “words sequence”

Pronunciation

Decoding 2 person’s speech
from waves:

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3 Language Model of 1st person

Language Model of 2nd person

Superposition of “2 waves”

Speech Recognition:

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

C

A B
factor graph

C

A B

C

A B

P(C|A,B)
moralize

Review:

Moralize
Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

Because a factor is a “clique” in undirected representation,
we transform Factorial HMM into “undirected” before running VE.

Not a Tree.

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

1

),(),(),(),,(112111121

Y

XYfYYfZYfXYZM

f(Y1,Z1)

f(Y1,X1)

f(Z1,X1)

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y2 Y3

Intro. 2 edges !!

1

),(),(),(),,(112111121

Y

XYfYYfZYfXYZM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Z1,Y2,X2)

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

1

),(),(),(),,(112111121

Z

XZfZZfZYfXZYM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(Y1,Z1)

f(Y1,X1)

f(Z1,X1)

Example: Factorial HMM

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

Intro. 2 edges !!

1

),(),(),(),,(112111121

Z

XZfZZfZYfXZYM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z2,X1)

Example: Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

1

),(),(),(111111

X

XZfXYfZYM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

f(Y1,X1)

f(Z1,X1)

Example: Factorial HMM

Z1 Z2

x2

Z3

x3

Y1 Y2 Y3

Intro. no edges !! Let’s eliminate !!

1

),(),(),(111111

X

XZfXYfZYM

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1)

Example: Factorial HMM

Z1 Z2 Z3

Y1 Y2 Y3

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

2

),(),(),(),,(322122321

Z

ZZfZZfZYMZYZM

M(Y2,Z2) M(Y3,Z3) M(Y1,Z1)

f(Z1,Z2) f(Z2,Z3)

Example: Factorial HMM

Z1 Z3

Y1 Y2 Y3

Intro. 3 edges !!

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

2

),(),(),(),,(322122321

Z

ZZfZZfZYMZYZM

M(Z1,Y2,Z3)

Example: Factorial HMM

Z1 Z2 Z3

Y1 Y2 Y3

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

1

),(),(),(211121

Z

ZZfZYMZYM

M(Y2,Z2) M(Y3,Z3) M(Y1,Z1)

f(Z1,Z2)

Example: Factorial HMM

Z2 Z3

Y1 Y2 Y3

Intro. 1 edge !!
(the best)

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Y1

Z1Z2

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

M(Y1,Z2)

1

),(),(),(211121

Z

ZZfZYMZYM

M(Y1,Z2)
M(Y2,Z2) M(Y3,Z3)

Example: Factorial HMM

Z2 Z3

Y1 Y2 Y3

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Y1

Z1Z2

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

M(Y1,Z2)

M(Y2,Z2) M(Y3,Z3)
M(Y1,Z2)

1

),(),(),(' 212122

Y

YYfZYMZYM

f(Y1,Y2)

Example: Factorial HMM

Z2 Z3

Y2 Y3

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

M(Y1,Z2)

Intro. 0 edge !!
(the best)

Y1Y2

Z2

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

M’(Y2,Z2) M(Y2,Z2) M(Y3,Z3)

1

),(),(),(' 212122

Y

YYfZYMZYM

Example: Factorial HMM

Z2 Z3

Y2 Y3

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

M(Y1,Z2)

Y1Y2

Z2

Y2

Z2Z3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

M(Y2,Z3)

M’(Y2,Z2) M(Y2,Z2) M(Y3,Z3)

2

),(),(),('),(32222232

Z

ZZfZYMZYMZYM

f(Z2,Z3)

Example: Factorial HMM

Z3

Y2 Y3

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

M(Y1,Z2)

Y1Y2

Z2

Y2

Z2Z3

M(Y2,Z3)

Y2Y3

Z3

Finding Elimination Order:
Find elimination adding as fewer edges as possible. (greedily)

M(Y1,Z1) M(Y2,Z2) M(Y3,Z3)

M(Y3,Z3)
M(Y2,Z3)

2

),(),(),('),(32222232

Z

ZZfZYMZYMZYM

f(Y2,Y3)

Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Y1Y2

Z2

Y2

Z2Z3

Y2Y3

Z3

1st pass:
Take a node as root.
Run Sum-Product from leaves to root.

2nd pass:
Run Sum-Product from root to leaves.

All marginal dist. can be derived
from

1. Multiply all M(.) from neighbors

by f(.) on this node.
2. Eliminate unwanted variable.

Y3

Z3

X3

Example: Factorial HMM

After building a clique tree, we can run “2 passes” on the tree
to get all messages M(.) needed for computing marginal.

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Y1Y2

Z2

Y2

Z2Z3

Y2Y3

Z3

Y3

Z3

X3

Assume we want : P(Y1,Y2)

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3 Y1, Y2 are
 dependent.

There must be a node in
 clique tree containing (Y1,Y2).

),(),,(),(),,(

dist.) maginal(or belief

2222121221 ZYMZYYfZYMZYYb

M(Y1,Z2)

2

),,(),(22121

Z

ZYYbYYP

Example : General Factorial HMM

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

W1 W2 W3

V1 V2 V3

Moralize
Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

W1 W2 W3

V1 V2 V3

A clique size=5,
intractable most of times.
(No tractable elimination exist…)

Some Model are Intractable for Exact Inference

Example: A Grid MRF

Example: A Grid MRF

Some Model are Intractable for Exact Inference

Example: A Grid MRF

Some Model are Intractable for Exact Inference

Example: A Grid MRF

Some Model are Intractable for Exact Inference

Example: A Grid MRF

Generally, we will have clique of “size N”
for a N*N grid, which is indeed intractable.

We will introduce
Approximate Inference
for this kind of problem

later.

Some Model are Intractable for Exact Inference

Variable Elimination: Dealing with Evidence

A B C D

E

F

G H

What if some variables X={X1…XD} are given in Evidence :

Given Evidence { B=b } :

B=b

f(A,B=b) f(B=b,C)

f(B=b,F)

Variable Elimination: Dealing with Evidence

A C D

E

F

G H

What if some variables X={X1…XD} are given in Evidence :

Given Evidence { B=b } :

f(A) f(C)

f(F)

A model with evidence
equivalent to another model
without evidence.

To infer PM(Z|X), we transform
M to another model M’
and infer PM’(Z).

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Z1

x1

Z2

x2

Z3

x3

Sometimes we want capture more dependency in a model,
which induce intractable inference.

),(),(

),(),(),(

),(),(),(

),(),(),(
1

),(

3221

332313

322212

312111

ZZfZZf

XZfXZfXZf

XZfXZfXZf

XZfXZfXZf
Z

ZXP

But given X1~X3, we actually run inference on another model M’.

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Z1

x1

Z2

x2

Z3

x3

Sometimes we want capture more dependency in a model,
which induce intractable inference.

),(),(

)('')(')(

)('')(')(

)('')(')(
1

),(

3221

333

222

111

ZZfZZf

ZfZfZf

ZfZfZf

ZfZfZf
Z

ZxXP

xxx

xxx

xxx

But given X1~X3, we actually run inference on another model M’.

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

),('),('
1

),(3221 ZZfZZf
Z

ZxXP xx

But given X1~X3, we actually run inference on another model M’.

Z1

x1

Z2

x2

Z3

x3

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

But given X1~X3, we actually run inference on another model M’.

1 2 3

3221

3221

),('),('
1

),('),('
1

)(

),(
)|(

Z Z Z

xx

xx

ZZfZZf
Z

ZZfZZf
Z

xXP

ZxXP
xXZP

Z1

x1

Z2

x2

Z3

x3

),('),('
)('

1
3221 ZZfZZf

xZ
xx

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

But given X1~X3, we actually run inference on another model M’.

1 2 3

3221

3221

),('),('
1

),('),('
1

)(

),(
)|(

Z Z Z

xx

xx

ZZfZZf
Z

ZZfZZf
Z

xXP

ZxXP
xXZP

Z1

x1

Z2

x2

Z3

x3

M’ is much more tractable.
),('),('

)('

1
3221 ZZfZZf

xZ
xx

Variable Elimination: Dealing with Evidence

If we can know “which variables will be given”, then a intractable
model will become a tractable one.

Sometimes we want capture more dependency in a model,
which induce intractable inference.

But given X1~X3, we actually run inference on another model M’.

Z1 Z2 Z3

New normalize const. can be computed Using VE.

M’ is much more tractable.
),('),('

)('

1
3221 ZZfZZf

xZ
xx

1 2 3

3221

3221

),('),('
1

),('),('
1

)(

),(
)|(

Z Z Z

xx

xx

ZZfZZf
Z

ZZfZZf
Z

xXP

ZxXP
xXZP

Variable Elimination: Dealing with Evidence

Z1

x1

Z2

x2

Z3

x3

Z1

x1

Z2

x2

Z3

x3

),(),(

),(),(),(

),(),(),(

),(),(),(
1

),(

3221

332313

322212

312111

ZZfZZf

XZfXZfXZf

XZfXZfXZf

XZfXZfXZf
Z

ZXP

),('),('
)('

1
)|(3221 ZZfZZf

XZ
XZP XX

Even if P(Z|X) can be inferred efficiently, “learning P(X,Z)” is intractable.
One solution is model P(Z|X) directly , yielding “CRF” model.

Intractable MRF model

Tractable CRF Model

Agenda

• Introduce the concept of “Variable Elimination” in special case of
Tree-structured Factor Graph.

• Extend the idea of “VE” to General Factor Graph with concept of
“Clique Tree”.

• See how to extend “VE” to “Most Probable Assignment” (MAP
configuration) Problem.

Query 3: Most Probable Assignment

• Given Evidence E = {X1=x1,…, XD=xD} and some other variables
Z={Z1, …, Zk} unspecified , Most Probable Assignment of Z is
given by:

)()|(maxarg
P(X)

)()|(
 maxarg

)|(maxarg)|(

ZPZXP
ZPZXP

XZPXZMPA

ZZ

Z

)|(maxarg

......

)|(maxarg

 X)|P(Z argmax

11

Z

XZP

XZP

KZK

Z

What’s the different ?

)|...(max...max)|(max 1
1

XZZPXZP K
ZZZ K

MPA Goal:

),...(...)(
1 KZ

1
Z

K XZZPXP

Likelihood Goal::

(Solved using VE)

Exploring the similarity between “max” & “∑” is the key
to solve MPA using VE.

What’s the different ?

)()|()|()|()|()(APABPBCPCDPDeEPeEP
D C B A

D C B A

APABPBCPCDPDEP)()|()|()|()|(

Review:

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

M(B) : marginal of B

M’(B) : ???

M(B) = maxA F(A,B) : maxMarginal of B

),(max)(BAFBM
A

For every choice of B, we decide an A*(B)=argmaxA F(A,B)
with M(B) = F(A*(B), B).

F(A,B) b1 b2 b3

a1 1 3 9

a2 2 5 8

a3 4 7 6

M(B) = maxA F(A,B) : maxMarginal of B

),(max)(BAFBM
A

For every choice of B, we decide an A*(B)=argmaxA F(A,B)
with M(B) = F(A*(B), B).

F(A,B) b1 b2 b3

a1 1 3 9

a2 2 5 8

a3 4 7 6

B b1 b2 b3

A*(B) a3

B b1 b2 b3

M(B) 4

M(B) = maxA F(A,B) : maxMarginal of B

B b1 b2 b3

A*(B) a3 a3

B b1 b2 b3

M(B) 4 7

),(max)(BAFBM
A

For every choice of B, we decide an A*(B)=argmaxA F(A,B)
with M(B) = F(A*(B), B).

F(A,B) b1 b2 b3

a1 1 3 9

a2 2 5 8

a3 4 7 6

M(B) = maxA F(A,B) : maxMarginal of B

B b1 b2 b3

A*(B) a3 a3 a1

B b1 b2 b3

M(B) 4 7 9

),(max)(BAFBM
A

For every choice of B, we decide an A*(B)=argmaxA F(A,B)
with M(B) = F(A*(B), B).

F(A,B) b1 b2 b3

a1 1 3 9

a2 2 5 8

a3 4 7 6

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(A,B)

F(A,B)

F(A,B) a1 a2 a3

b1 … … …

b2 … … …

b3 … … …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

M(B)

M(B) = maxA F(A,B)

B A*(B) M(B)

b1 a1 …

b2 a3 …

b3 a2 …

F(A,B) a1 a2 a3

b1 … … …

b2 … … …

b3 … … …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(B,C)

F(B,C)=P(C|B)M(B)

B A*(B) M(B)

b1 a1 …

b2 a3 …

b3 a2 …

P(C|B) b1 b2 b3

c1 … … …

c2 … … …

c3 … … …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(B,C)=P(C|B)M(B)

F(B,C) b1 b2 b3

c1 … … …

c2 … … …

c3 … … …

F(B,C)

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

M(C)

M(C) = maxB F(B,C)

F(B,C) b1 b2 b3

c1 … … …

c2 … … …

c3 … … …

C B*(C) M(C)

c1 b3 …

c2 b1 …

c3 b2 …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(C,D)

F(C,D) = P(D|C)M(C)

C B*(C) M(C)

c1 b3 …

c2 b1 …

c3 b2 …

P(D|C) c1 c2 c3

d1 … … …

d2 … … …

d3 … … …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(C,D) = P(D|C)M(C)

F(C,D) c1 c2 c3

d1 … … …

d2 … … …

d3 … … …

F(C,D)

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

M(D)=maxC F(C,D)

F(C,D) c1 c2 c3

d1 … … …

d2 … … …

d3 … … …

M(D)

D C*(D) M(D)

d1 c1 …

d2 c2 …

d3 c3 …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

F(D)=P(E=e|D)M(D)

F(D,E=e)

D C*(D) M(D)

d1 c1 …

d2 c2 …

d3 c3 …

P(E=e|D) d1 d2 d3

e … … …

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

M= maxD F(D)

M

F(D,E=e) d1 d2 d3

e … … …

D* M

d2 …

What we get ? M = maxABCD P(A,B,C,D,E=e)

What we want ? (A*,B*,C*,D*) = argmaxABCD P(A,B,C,D,E=e)

Most Probable Assignment on a Chain

)()|()|()|()|(maxmaxmaxmax

),,,,(max
DC,B,A,

APABPBCPCDPDeEP

eEDCBAP

ABCD

)()|(max)|(max)|(max)|(max APABPBCPCDPDeEP
ABCD

What we want ? (A*,B*,C*,D*) = argmaxABCD P(A,B,C,D,E=e)

B A*(B) M(B)

b1 a1 …

b2 a3 …

b3 a2 …

C B*(C) M(C)

c1 b3 …

c2 b1 …

c3 b2 …

D C*(D) M(D)

d1 c1 …

d2 c2 …

d3 c3 …

D* M

d2 …

(a1 , b1, c2, d2)

M

Most Probable Assignment on general Graph

Y1

Z1Z2

Y1

Z1

X1

Y2

Z2

X2

Y3

Z3

X3

Y1Y2

Z2

Y2

Z2Z3

Y2Y3

Z3

Y3

Z3

X3

Z1

x1

Z2

x2

Z3

x3

Y1 Y2 Y3

It’s straight forward to generalize algorithm above
to case of general graph with similarity of “∑” and “max”.

(The difference is there must be a “traceback” procedure to find the
 “argmax” after we get “max”.)

Summary

• To solve inference problems like “likelihood of X”, “P(Z|X)”,
“Most Probable Assignment”, we can use Variable Elimination
(e.g. Sum-Product) algorithm

• In case of tree-structured factor graph, we just run “2 passes”
of VE from leaves to a root & the reverse.

• In case of general-structured graph, we must find a “good”
elimination order inducing smallest “maximum clique”, which
is often done with greedy method.

• When we know which variables will be given in advance, we
can derive much easier model M’ from original M with
evidence, which is more tractable in Inference & Learning.

