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D.C. Program 
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Let u(x), v(x), fi(x) be convex function defined on Rn, gj(x) be affine function on Rn.  

A  Difference of Convex Function  (D.C.) Program is defined as: 



Ex. Structural SVM with hidden variables:  [C.N.J. Yu and T. Joachims, 2009] 
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Let u(x), v(x), fi(x) be convex function defined on Rn, gj(x) be affine function on Rn.  

A  Difference of Convex Function  (D.C.) Program is defined as: 



Ex.  Structural SVM with non-convex tighter bound:  [C. B. Do et al., 2009] 
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Ex. Structural SVM with hidden variables:  [C.N.J. Yu and T. Joachims, 2009] 
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Let u(x), v(x), fi(x) be convex function defined on Rn, gj(x) be affine function on Rn.  

A  Difference of Convex Function  (D.C.) Program is defined as: 
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Let u(x), v(x), fi(x) be convex function defined on Rn, gj(x) be affine function on Rn.  

A  Difference of Convex Function  (D.C.) Program is defined as: 

Convergence rate is hard to analyze in non-smooth problem. In this work, we handle the special 

case when the smooth part of  u(x) is strictly convex quadratic, and v(x) is piecewise-linear. 
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Concave-Convex Procedure 
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Suppose we can compute the sub-gradient of v(x), the Concave-Convex Procedure 

(CCCP) solves a D.C. Program by a series of convex problem: [Yuille and 

Rangarajan, 2003]:  

 

[Yuille and Rangarajan, 2003] shows (1) guarantees descent of the D.C. Program. 

(1) 

[B. Sriperumbudur et al., 2009] provided Global Convergence of (1) via Zanwill’s thoery. 

However, they pointed out the Local Convergence Rate of (1) is an open problem. 

Goal: 

Show that (1) has at least Linear Convergence Rate via the connection to more general 

Block Coordinate Descent (BCD) algorithm. 



CCCP as Majorization Minimization (MM) 

CCCP is a special case of Majorization Minimization (MM), where we construct a 

majorization function g(x,y) of objective function f(x)=u(x)-v(x): 
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CCCP as Majorization Minimization (MM) 

CCCP is a special case of Majorization Minimization (MM), where we construct a 

majorization function g(x,y) of objective function f(x)=u(x)-v(x): 









xxxgxf

yxyxgxf

  ),,()(

,  ),,()(
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In CCCP, g(x,y) is constructed by 1st order Taylor Approximation of  v(x) at point  y: 
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Therefore, 



CCCP as Majorization Minimization (MM) 

CCCP is a special case of Majorization Minimization (MM), where we construct a 

majorization function g(x,y) of objective function f(x)=u(x)-v(x): 
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where Ω is the feasible domain. Then the MM algorithm solves: 

(2) 

[R. Salakhutdinov, 2003] analyzed local convergence rate of general MM algorithm by 

taking (2) as a differentiable map  x(t+1) = ψ(x(t)). However, ψ(x) is not  differentiable 

when there are constraints or non-smooth function. 
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Here we took another view of (2) to analyze convergence. 



MM as Block Coordinate Descent 

Since the minimum of g(x(t),y) occurs at y=x(t), we can view MM algorithm as Block 

Coordinate Descent over x and y: 
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However, when v(x) is piecewise-linear, the master problem 

is discontinuous and hard to analyze. 
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MM as Block Coordinate Descent 

Since the minimum of g(x(t),y) occurs at y=x(t), we can view MM algorithm as Block 

Coordinate Descent over x and y: 
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We can take an alternative formulation by observing: 
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Block Coordinate Descent over x and d on the alternative formulation: 
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yields the same CCCP algorithm. 



Block Coordinate Descent 

for Non-convex, Non-smooth Problem 

Consider the problem: 
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where f(x,y) is smooth and P(x,y) is nonsmooth, convex, lower semi-continuous,  

and separable for x and y. The Block Coordinate Descent  
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Converges to a stationary point of  (3) with at least linear rate  if the smooth part of  

(4), (5) are strictly convex quadratic, f(x,y) is quadratic, and P(x,y) is polyhedral. 

(3) 

(4) 

(5) 

Lemma 1 

Proof. Since (4), (5) are strictly convex quadratic, the BCD correspond to Coordinate 

Gradient Descent (CGD) in [Paul Tseng, etal., 2009] with exact Hessian matrix 

and line search. The result holds by Theorem 1, 2, 4 of their paper. 



Convergence Theorem of CCCP 
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Theorem 

The CCCP converges to stationary point of  D.C. Program with at least linear rate,  

if the non-smooth part of u(x) and v(x) are piecewise-linear, the smooth part of u(x) 

is strictly convex quadratic, and the domain Ω is polyhedral. 

Proof. 
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The CCCP can be interpreted as BCD over x and d of 

Which can be also written as 

Where smooth part f(x,d) is quadratic, and P(x,d) is polyhedral separable. 

Minimizing over x, the problem strictly convex quadratic. 

Minimizing over d, there is equivalent strictly convex quadratic problem (Lemma 2 in paper). 
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