A Convex Atomic-Norm Approach to Multiple Sequence Alignment & Motif Discovery

Ian E.H. Yen

Joint work with Xin Lin, Jiong Zhang, Pradeep Ravikumar and Inderjit Dhillon

> Department of Computer Science University of Texas at Austin

> > 1 / 16

- 2 Convex Relaxation via Atomic Constraints
- 3 Greedy Direction Method of Multiplier (GDMM)

4 Experimental Results

2 / 16

Multiple Sequence Alignment

Sequence Alignment

Sequence Alignment: An alignment *a* is a path of transitions *t*₁,..,*t_K* between states (*i*, *j*) ∈ [ℓ₁] ∈ [ℓ₂] of reads on two sequences *x*₁, *x*₂. The sequence alignment problem can be expressed as

$$a^* = \arg \min_{a} d(a; x_1, x_2) := \sum_{t \in a} d(t; x_1, x_2).$$

where transition $t \in \{\text{matching, insertion, deletion}\}$.

Multiple Sequence Alignment

Multiple Sequence Alignment (MSA):

$$(y^*, a_1^*, ..., a_N^*) = \underset{y, a_1, ..., a_N}{\operatorname{argmin}} \sum_{n=1}^N d(a_n; x_n, y).$$
 (1)

aims to find a latent consensus sequence y^* and alignments $a_1, ..., a_N$ jointly. (1) is called Star Alignment in distinction to Sum-of-Pairs objective, both of which are NP-hard.

Motif Discovery

Motif Discovery (MD):

$$(y_1^*,...,y_K^*;a_1^*,...,a_N^*) := \underset{y,a}{\operatorname{argmin}} \sum_{n=1}^N d(a_n;x_n,y_1,...,y_K)$$
(2)

(日) (同) (三) (三)

is a further generalization of MSA, where multiple motifs $y_1,...,y_K$ can be aligned to segments of sequence. Typically, an insertion is only considered as gap between motifs (not inside motif).

Existing Approaches

- HMM: Model with (Profile) HMM and estimate via EM-style algorithm.
- Progressive Method: Reduce MSA to a series of Pairwise SA.
- Iterative, hill-climbing methods.

-∢∃>

2 Convex Relaxation via Atomic Constraints

3 Greedy Direction Method of Multiplier (GDMM)

4 Experimental Results

Convex Relaxation via Atomic Constraints: MSA

• $\mathcal{M} = \ell \times L \times |\hat{\Sigma}|.$

- \mathcal{A}_n : all possible alignments.
- \mathcal{P} : any "folding screen" \boldsymbol{p} of single consensus \boldsymbol{z} .

Convex Relaxation via Atomic Constraints: MD

- MD uses representation similar to MSA, with 3rd dimension $|\hat{\Sigma}|$ replaced by the number of all possible motifs $\sum_{L=L_{min}}^{L_{max}} |\Sigma|^{L}$.
- Replace $W \in Conv(\mathcal{P})$ with the atomic-norm constraint $\Omega_{\mathcal{P}_{C}}(W) \leq K$, where $\Omega_{\mathcal{P}_{C}}(W) := \inf \{q \geq 0 : W \in q * Conv(\mathcal{P})\}.$

2 Convex Relaxation via Atomic Constraints

3 Greedy Direction Method of Multiplier (GDMM)

4 Experimental Results

Greedy Direction Method of Multiplier (GDMM)

 To decouple the two atomic constraints of the convex relaxation, we minimize Augmented Lagrangian (AL) of

$$\begin{split} \min_{\substack{W_1, W_2 \in \mathcal{M}_{\mathbb{R}}}} & \langle D, W_1 \rangle + \frac{\rho}{2} \| W_1 - W_2 \|^2 \\ s.t. & W_1 \in \textit{Conv}(\mathcal{A}) \\ & W_2 \in \textit{Conv}(\mathcal{P}) \\ & W_1 = W_2. \end{split}$$

w.r.t. W_1 , W_2 separately, followed by a Dual Ascent step

$$Y^{(t+1)} = Y^{(t)} + \eta \left(W_1^{(t+1)} - W_2^{(t+1)} \right),$$

where Y is dual variable corresponding to constraint $W_1 = W_2$.

Greedy Direction Method of Multiplier (GDMM)

• Minimizing Augmented Lagrangian

$$\mathcal{L}(W_1, W_2, Y) := \langle D, W_1
angle + \langle Y, W_1 - W_2
angle + rac{
ho}{2} \|W_1 - W_2\|^2$$

exactly w.r.t. W_1 or W_2 is hard, due to complex atomic constraint.

- We propose a GDMM algorithm, which minimizes (*W*₁, *W*₂) via only a (non-drop) step of Away-step Frank-Wolfe for each Dual Ascent step.
- The Frank-Wolfe step only requires computation of the greedy atoms:

$$W_1^{FW} := \underset{W_1 \in Conv(\mathcal{A})}{\operatorname{argmin}} \langle D + \rho(W_1 - W_2) + Y, W_1 \rangle$$

$$W_2^{FW} := \underset{W_2 \in Conv(\mathcal{P})}{\operatorname{argmax}} \left\langle \rho(W_1 - W_2) + Y, W_2 \right\rangle$$

using local linear approximation, which can be solved via Smith-Waterman alignment and Viterbi Algorithm respectively.

• We show that GDMM converges to ϵ suboptimality in $O(1/\epsilon)$ iterations.

(日) (周) (三) (三)

- 2 Convex Relaxation via Atomic Constraints
- 3 Greedy Direction Method of Multiplier (GDMM)

4 Experimental Results

Experimental Result: Multiple Sequence Alignment

Settings	Synthetic Datasets				Realistic Datasets	
Solvers\Data	Syn01	Syn02	Syn03	Syn04	sDicF	sHairpin
	N=10, L=30	N=30, L=50	N=30, L=50	N=30, L=50	N=6, L=15	N=20, L=30
	(3, 2, 4)	(12, 11, 7)	(19, 18, 9)	(24, 24, 19)	(3, 4, 16)	(9, 7, 44)
ClustalOmega	311 / 47	3295 / 126	6671 / 274	5946 / 240	119 / 27	1225 / 77
Kalign	88 / 10	1440 / 51	2003 / 71	2612 / 93	104 / 24	874 / 54
T-COFFEE	99 / 12	1031 / 36	1492 / 53	2120 / 75	104 / 24	868 / 53
MAFFET	87 / 10	1196 / 42	1856 / 66	2843 / 103	103 / 27	874 / 54
MUSCLE	87 / 10	1060 / 37	1649 / 59	2311 / 83	105 / 24	874 / 54
ConvexMSA	79 / 9	863 / 3 0	1285 / 45	1903 / 67	98 / 23	853 / 50
Ground Truth	79 / 9	863 / 30	1310 / 46	1903 / 67	103 / 23	974 / 60

- Synthetic data use TKF1 model (Thorne et al., 1991) to generate insertion/deletion (with some Poisson rate).
- (I,D,M)=(#insertions,#deletions,#mismatches).
- We report both Sum-of-Pairs / Star-Alignment scores.

Experimental Result: Motif Discovery

- Dechier is a Motif Discovery problem with perfect matched solution.
- Each character of a well-known saying vevi vidi vici (I came, I saw, I conquered) is encoded into a binary string and concatenated with others.
- We compare our convex relaxation approach to the current most-widely-used algorithm Multiple EM for Motif Elicitation (MEME) for MD.

イロト イ理ト イヨト イヨト

- Multiple Sequence Alignment (MSA) and Motif Discovery (MD) are two fundamental and NP-hard tasks in Bioinformatics.
- We propose a convex relaxation approach to MSA & MD based on the concept of Atomic Norm, and a GDMM algorithm that can find its solution in practice.
- Experiments on small-scale MSA, MD problems demonstrate superioty of the convex approach. Scalability is one of our on-going works.